Question
Question: \[\left| \begin{matrix} 1 & a & a^{2} - bc \\ 1 & b & b^{2} - ac \\ 1 & c & c^{2} - ab \end{matrix} ...
1 & a & a^{2} - bc \\
1 & b & b^{2} - ac \\
1 & c & c^{2} - ab
\end{matrix} \right| =$$
A
0
B
a3+b3+c3−3abc
C
3abc
D
(a+b+c)3
Answer
0
Explanation
Solution
111abca2−bcb2−acc2−ab=001a−bb−cc(a−b)(a+b+c)(b−c)(a+b+c)c2−ab
by {R1→R1−R2R2→R2−R3
= (a−b)(b−c)00111ca+b+ca+b+cc2−ab=0, {∵R1≡R2}.