Solveeit Logo

Question

Question: \[\left| \begin{matrix} 1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{matri...

1 & 1 + ac & 1 + bc \\ 1 & 1 + ad & 1 + bd \\ 1 & 1 + ae & 1 + be \end{matrix} \right| =$$
A

1

B

0

C

3

D

a+b+ca + b + c

Answer

0

Explanation

Solution

Applying C3C3C1C_{3} \rightarrow C_{3} - C_{1}and C2C2C1C_{2} \rightarrow C_{2} - C_{1}, we get

1acbc1adbd1aebe=ab1cc1dd1ee=0\left| \begin{matrix} 1 & ac & bc \\ 1 & ad & bd \\ 1 & ae & be \end{matrix} \right| = ab\left| \begin{matrix} 1 & c & c \\ 1 & d & d \\ 1 & e & e \end{matrix} \right| = 0, {C2C3}\{\because C_{2} \equiv C_{3}\}.