Question
Question: \(\left| \begin{matrix} 1 & 1 & 1 \\ \cos(nx) & \cos(n + 1)x & \cos(n + 2)x \\ \sin(nx) & \sin(n + 1...
1cos(nx)sin(nx)1cos(n+1)xsin(n+1)x1cos(n+2)xsin(n+2)x is not depend.
A
On x
B
On n
C
Both on x and n
D
None of these
Answer
On n
Explanation
Solution
Δ=1cosnxsinnx1cos(n+1)xsin(n+1)x1cos(n+2)xsin(n+2)x
Applying C1→C1+C3−(2cosx)C2
2(1 - \cos x) & 1 & 1 \\ 0 & \cos(n + 1)x & \cos(n + 2)x \\ 0 & \sin(n + 1)x & \sin(n + 2)x \end{matrix} \right|$$ $$\Delta = 2(1 - \cos x)\lbrack\cos(n + 1)x\sin(n + 2)x - \cos(n + 2)x\sin(n + 1)x\rbrack$$ $$\Delta = 2(1 - \cos x)\lbrack\sin(n + 2 - n - 1)x\rbrack = 2\sin x(1 - \cos x)$$ i.e., $\Delta$ is independent of n.