Solveeit Logo

Question

Question: \(\left| \begin{matrix} 1 & 1 & 1 \\ \cos(nx) & \cos(n + 1)x & \cos(n + 2)x \\ \sin(nx) & \sin(n + 1...

111cos(nx)cos(n+1)xcos(n+2)xsin(nx)sin(n+1)xsin(n+2)x\left| \begin{matrix} 1 & 1 & 1 \\ \cos(nx) & \cos(n + 1)x & \cos(n + 2)x \\ \sin(nx) & \sin(n + 1)x & \sin(n + 2)x \end{matrix} \right| is not depend.

A

On x

B

On n

C

Both on x and n

D

None of these

Answer

On n

Explanation

Solution

Δ=111cosnxcos(n+1)xcos(n+2)xsinnxsin(n+1)xsin(n+2)x\mathbf{\Delta}\mathbf{=}\left| \begin{matrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{\cos}\mathbf{n}\mathbf{x} & \mathbf{\cos}\mathbf{(}\mathbf{n + 1)x} & \mathbf{\cos}\mathbf{(}\mathbf{n + 2)x} \\ \mathbf{\sin}\mathbf{n}\mathbf{x} & \mathbf{\sin}\mathbf{(}\mathbf{n + 1)x} & \mathbf{\sin}\mathbf{(}\mathbf{n + 2)x} \end{matrix} \right|

Applying C1C1+C3(2cosx)C2C_{1} \rightarrow C_{1} + C_{3} - (2\cos x)C_{2}

2(1 - \cos x) & 1 & 1 \\ 0 & \cos(n + 1)x & \cos(n + 2)x \\ 0 & \sin(n + 1)x & \sin(n + 2)x \end{matrix} \right|$$ $$\Delta = 2(1 - \cos x)\lbrack\cos(n + 1)x\sin(n + 2)x - \cos(n + 2)x\sin(n + 1)x\rbrack$$ $$\Delta = 2(1 - \cos x)\lbrack\sin(n + 2 - n - 1)x\rbrack = 2\sin x(1 - \cos x)$$ i.e., $\Delta$ is independent of n.