Solveeit Logo

Question

Question: \[\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{matrix} \right| =\]...

1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{matrix} \right| =$$
A

a3+b3+c33abca^{3} + b^{3} + c^{3} - 3abc

B

a3+b3+c3+3abca^{3} + b^{3} + c^{3} + 3abc

C

(a+b+c)(ab)(bc)(ca)(a + b + c)(a - b)(b - c)(c - a)

D

None of these

Answer

(a+b+c)(ab)(bc)(ca)(a + b + c)(a - b)(b - c)(c - a)

Explanation

Solution

Δ=111abca3b3c3\Delta = \left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{matrix} \right| vanishes when a=b,b=c,c=aa = b,b = c,c = a. Hence (ab),(bc),(ca)(a - b),(b - c),(c - a) are factors of Δ\Delta. Since Δ\Delta is symmetric in C21=(1)2+1(18+21)=39C_{21} = ( - 1)^{2 + 1}(18 + 21) = - 39 and of 4th degree, (a+b+c)(a + b + c) is also a factor, so that we can write

10x+904281+42+9x=0or x=9- 10x + 90 - 42 - 81 + 42 + 9x = 0\text{or}\ x = 9 ......(i)

Where by comparing the coefficients of the leading term bc3bc^{3} on both the sides of identity (i). We get

1=k(1)(1)k=11 = k( - 1)( - 1) \Rightarrow k = 1

C3C3C1,C_{3} \rightarrow C_{3} - C_{1},.

Trick : Put a=1,b=2,c=3a = 1,b = 2,c = 3, so that determinant

1111231827=1(30)1(24)+1(82)=12\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 8 & 27 \end{matrix} \right| = 1(30) - 1(24) + 1(8 - 2) = 12 which is given by (3). i.e. (1+2+3)(12)(23)(31)=12(1 + 2 + 3)(1 - 2)(2 - 3)(3 - 1) = 12.