Solveeit Logo

Question

Mathematics Question on Determinants

1xy+z 1yz+x 1zx+y \left| \begin{matrix} 1 & x & y+z \\\ 1 & y & z+x \\\ 1 & z & x+y \\\ \end{matrix} \right| is equal to

A

00

B

xx

C

yy

D

xyzxyz

Answer

00

Explanation

Solution

Let Δ=1xy+z 1yz+x 1zx+y \Delta =\left| \begin{matrix} 1 & x & y+z \\\ 1 & y & z+x \\\ 1 & z & x+y \\\ \end{matrix} \right|
Applying C3C3+C2{{C}_{3}}\to {{C}_{3}}+{{C}_{2}}
=1xx+y+z 1yx+y+z 1zx+y+z =\left| \begin{matrix} 1 & x & x+y+z \\\ 1 & y & x+y+z \\\ 1 & z & x+y+z \\\ \end{matrix} \right|
=(x+y+z)1x1 1y1 1z1 =(x+y+z)\left| \begin{matrix} 1 & x & 1 \\\ 1 & y & 1 \\\ 1 & z & 1 \\\ \end{matrix} \right|
=0=0
(C1andC3areidentical)(\because \,\,\,{{C}_{1}}\,and\,\,{{C}_{3}}\,are\,identical)