Solveeit Logo

Question

Question: \(\left( a\sec\theta,b\tan\theta \right)\)and \(\left( a\sec\varphi,b\tan\varphi \right)\) are the e...

(asecθ,btanθ)\left( a\sec\theta,b\tan\theta \right)and (asecφ,btanφ)\left( a\sec\varphi,b\tan\varphi \right) are the ends of a focal chord of x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1, then tanφ2\tan\frac{\varphi}{2} equals to

A

e1e+1\frac{e - 1}{e + 1}

B

1e1+e\frac{1 - e}{1 + e}

C

1+e1e\frac{1 + e}{1 - e}

D

e+1e1\frac{e + 1}{e - 1}

Answer

1e1+e\frac{1 - e}{1 + e}

Explanation

Solution

Equation PQ is

xacos(θφ2)ybsin(θ+φ2)=cos(θ+φ2)\frac{x}{a}\cos\left( \frac{\theta - \varphi}{2} \right) - \frac{y}{b}\sin\left( \frac{\theta + \varphi}{2} \right) = \cos\left( \frac{\theta + \varphi}{2} \right)

Its passes through (ae, 0)

\therefore ecos(θφ2)0=cos(θ+φ2)e\cos\left( \frac{\theta - \varphi}{2} \right) - 0 = \cos\left( \frac{\theta + \varphi}{2} \right)

cos(θφ2)cos(θ+φ2)=1e\frac{\cos\left( \frac{\theta - \varphi}{2} \right)}{\cos\left( \frac{\theta + \varphi}{2} \right)} = \frac{1}{e}

cos(θφ2)cos(θ+φ2)cos(θφ2)+cos(θ+φ2)=1e1+e\frac{\cos\left( \frac{\theta - \varphi}{2} \right) - \cos\left( \frac{\theta + \varphi}{2} \right)}{\cos\left( \frac{\theta - \varphi}{2} \right) + \cos\left( \frac{\theta + \varphi}{2} \right)} = \frac{1 - e}{1 + e}

(By componentdo & dividendo method)

1e1+e\frac{1 - e}{1 + e}