Question
Question: \(\left( a\sec\theta,b\tan\theta \right)\)and \(\left( a\sec\varphi,b\tan\varphi \right)\) are the e...
(asecθ,btanθ)and (asecφ,btanφ) are the ends of a focal chord of a2x2−b2y2=1, then tan2φ equals to
A
e+1e−1
B
1+e1−e
C
1−e1+e
D
e−1e+1
Answer
1+e1−e
Explanation
Solution
Equation PQ is
axcos(2θ−φ)−bysin(2θ+φ)=cos(2θ+φ)
Its passes through (ae, 0)
∴ ecos(2θ−φ)−0=cos(2θ+φ)⇒
cos(2θ+φ)cos(2θ−φ)=e1
cos(2θ−φ)+cos(2θ+φ)cos(2θ−φ)−cos(2θ+φ)=1+e1−e
(By componentdo & dividendo method)
⇒ 1+e1−e
