Solveeit Logo

Question

Question: \(\left( a \right)\) If the roots of the equation, \(\left( {b - c} \right){x^2} + \left( {c - a} \r...

(a)\left( a \right) If the roots of the equation, (bc)x2+(ca)x+(ab)=0\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0 be equal, then prove that a, b, c are in arithmetic progression.
(b)\left( b \right) If a(bc)x2+b(ca)x+c(ab)=0a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right) = 0 has equal roots, prove that a, b, c are in harmonic progression.

Explanation

Solution

In this particular question use the concept that if a quadratic equation has equal roots then the value of discriminant D must be zero i.e. D=B24AC=0D = {B^2} - 4AC = 0, and use the concept that if a, b, and C are in A.P then it must satisfies the condition, 2b = a + c and if a, b, and C are in H.P then it must satisfies the condition, 2b=1a+1c\dfrac{2}{b} = \dfrac{1}{a} + \dfrac{1}{c}, so use these concepts to reach the solution of the question.

Complete step-by-step answer :
(a)\left( a \right) If the roots of the equation, (bc)x2+(ca)x+(ab)=0\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0 be equal, then prove that a, b, c are in arithmetic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. D=B24AC=0D = {B^2} - 4AC = 0.
Where, A = b – c, B = c – a, and C = a – b.
Now substitute the values we have,
D=(ca)24(bc)(ab)=0\Rightarrow D = {\left( {c - a} \right)^2} - 4\left( {b - c} \right)\left( {a - b} \right) = 0
Now simplify using the property that (xy)2=x2+y22xy{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy so we have,
c2+a22ac4ab+4b2+4ac4bc=0\Rightarrow {c^2} + {a^2} - 2ac - 4ab + 4{b^2} + 4ac - 4bc = 0
c2+a2+2ac4ab+4b24bc=0\Rightarrow {c^2} + {a^2} + 2ac - 4ab + 4{b^2} - 4bc = 0
(a+c)2+4b24b(a+c)=0\Rightarrow {\left( {a + c} \right)^2} + 4{b^2} - 4b\left( {a + c} \right) = 0, [c2+a2+2ac=(a+c)2]\left[ {\because {c^2} + {a^2} + 2ac = {{\left( {a + c} \right)}^2}} \right]
So it is the formula of (xy)2{\left( {x - y} \right)^2}, where x = a + c and y = 2b
[(a+c)2b]2=0\Rightarrow {\left[ {\left( {a + c} \right) - 2b} \right]^2} = 0
a+c2b=0\Rightarrow a + c - 2b = 0
2b=a+c\Rightarrow 2b = a + c
Hence a, b, and c are in Arithmetic progression.
Hence proved.
(b)\left( b \right) If a(bc)x2+b(ca)x+c(ab)=0a\left( {b - c} \right){x^2} + b\left( {c - a} \right)x + c\left( {a - b} \right) = 0 has equal roots, prove that a, b, c are in harmonic progression.
Proof –
As roots are equal then the value of discriminant D must be zero i.e. D=B24AC=0D = {B^2} - 4AC = 0.
Where, A = a(b – c), B = b(c – a), and C = c(a – b).
Now substitute the values we have,
D=b2(ca)24ac(bc)(ab)=0\Rightarrow D = {b^2}{\left( {c - a} \right)^2} - 4ac\left( {b - c} \right)\left( {a - b} \right) = 0
Now simplify using the property that (xy)2=x2+y22xy{\left( {x - y} \right)^2} = {x^2} + {y^2} - 2xy so we have,
b2(c2+a22ac)4ac(abb2ac+bc)=0\Rightarrow {b^2}\left( {{c^2} + {a^2} - 2ac} \right) - 4ac\left( {ab - {b^2} - ac + bc} \right) = 0
b2c2+b2a22ab2c4a2bc+4ab2c+4a2c24abc2=0\Rightarrow {b^2}{c^2} + {b^2}{a^2} - 2a{b^2}c - 4{a^2}bc + 4a{b^2}c + 4{a^2}{c^2} - 4ab{c^2} = 0
b2c2+b2a2+2ab2c4a2bc+4a2c24abc2=0\Rightarrow {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c - 4{a^2}bc + 4{a^2}{c^2} - 4ab{c^2} = 0
(ab+bc)2+4a2c24ac(ab+bc)=0\Rightarrow {\left( {ab + bc} \right)^2} + 4{a^2}{c^2} - 4ac\left( {ab + bc} \right) = 0, [b2c2+b2a2+2ab2c=(ab+bc)2]\left[ {\because {b^2}{c^2} + {b^2}{a^2} + 2a{b^2}c = {{\left( {ab + bc} \right)}^2}} \right]
So it is the formula of (xy)2{\left( {x - y} \right)^2}, where x = ab + bc and y = 2ac
[(ab+bc)2ac]2=0\Rightarrow {\left[ {\left( {ab + bc} \right) - 2ac} \right]^2} = 0
(ab+bc)2ac=0\Rightarrow \left( {ab + bc} \right) - 2ac = 0
2ac=ab+bc\Rightarrow 2ac = ab + bc
Now divide by abc throughout we have,
2acabc=ababc+bcabc\Rightarrow \dfrac{{2ac}}{{abc}} = \dfrac{{ab}}{{abc}} + \dfrac{{bc}}{{abc}}
2b=1c+1a\Rightarrow \dfrac{2}{b} = \dfrac{1}{c} + \dfrac{1}{a}
Hence a, b, and c are in Harmonic progression.
Hence proved.

Note : We can also prove the conditions using the property that in a quadratic equation the sum of the roots is the ratio of the negative times the coefficient of x to the coefficient of x2{x^2}, and the product of the roots is the ratio of the constant term to the coefficient of x2{x^2}, as the roots are equal so we can easily eliminate the variable, for example in (bc)x2+(ca)x+(ab)=0\left( {b - c} \right){x^2} + \left( {c - a} \right)x + \left( {a - b} \right) = 0 let the roots be p and p.
So, the sum of the roots, p + p = (ca)bc\dfrac{{ - \left( {c - a} \right)}}{{b - c}}, therefore, 2p = (ca)bc\dfrac{{ - \left( {c - a} \right)}}{{b - c}}, and the product of the roots, p2=abbc{p^2} = \dfrac{{a - b}}{{b - c}}. So we can easily eliminate the variable p, by substituting p=(ca)2(bc)p = \dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}} in second equation so we have, [((ca)2(bc))2=abbc]\left[ {{{\left( {\dfrac{{ - \left( {c - a} \right)}}{{2\left( {b - c} \right)}}} \right)}^2} = \dfrac{{a - b}}{{b - c}}} \right], (ca)24(bc)=ab \Rightarrow \dfrac{{{{\left( {c - a} \right)}^2}}}{{4\left( {b - c} \right)}} = a - b, rest of the solution remains the same.