Solveeit Logo

Question

Mathematics Question on permutations and combinations

(8C18C2+8C38C4+8C58C6+8C78C8)\left(^{8}C_{1} - ^{8}C_{2} + ^{8}C_{3} -^{8}C_{4} + ^{8}C_{5} - ^{8}C_{6} +^{8}C_{7} - ^{8}C_{8}\right) equals:

A

0

B

1

C

70

D

256

Answer

1

Explanation

Solution

Let A=(8C18C2+8C38C4+8C58C6+8C78C8)A = \left(^{8}C_{1} - ^{8}C_{2} + ^{8}C_{3} -^{8}C_{4} + ^{8}C_{5} - ^{8}C_{6} +^{8}C_{7} - ^{8}C_{8}\right) =8!1!7!8!2!6!+8!3!5!8!4!4!+8!5!3!8!6!2!+8!7!1!8!0!8!= \frac{8!}{1!7! } - \frac{8!}{2!6!} + \frac{8!}{3!5!} - \frac{8!}{4!4!} + \frac{8!}{5!3!} - \frac{8!}{6!2!} + \frac{8!}{7!1!} - \frac{8!}{0!8!} Note : nCr=n!r!(nr)!^{n}C_{r} = \frac{n!}{r!\left(n-r\right)!} Thus, A=88×72+8×7×63×28×7×6×54×3×2×1+8×7×63×28×72+81A = 8 - \frac{8\times7}{2} + \frac{8\times 7\times 6}{3\times 2} - \frac{8\times 7\times 6\times 5}{4\times 3\times 2\times 1} + \frac{8\times 7\times 6}{3\times2}- \frac{8\times 7}{2} + 8 - 1 And A = 8 - 28 + 56 - 70 + 56 - 28 + 8 - 1 = 1