Solveeit Logo

Question

Question: \[\left( 1 + \frac{1}{2!} + \frac{1}{4!} + .... \right)\left( 1 + \frac{1}{3!} + \frac{1}{5!} + .......

(1+12!+14!+....)(1+13!+15!+....)=\left( 1 + \frac{1}{2!} + \frac{1}{4!} + .... \right)\left( 1 + \frac{1}{3!} + \frac{1}{5!} + .... \right) =

A

e4e^{4}

B

e21e2\frac{e^{2} - 1}{e^{2}}

C

e414e2\frac{e^{4} - 1}{4e^{2}}

D

e4+14e2\frac{e^{4} + 1}{4e^{2}}

Answer

e414e2\frac{e^{4} - 1}{4e^{2}}

Explanation

Solution

(log3)33\frac{(\log 3)^{3}}{3}

log(33)6\frac{\log(3^{3})}{6}.