Solveeit Logo

Question

Question: If $|\dot A + \dot B| = |\dot A| = |\dot B|$, then the angle between $\dot A$ and $\dot B$ is...

If A˙+B˙=A˙=B˙|\dot A + \dot B| = |\dot A| = |\dot B|, then the angle between A˙\dot A and B˙\dot B is

A

B

60°

C

90°

D

120°

Answer

120°

Explanation

Solution

The magnitude of the sum of two vectors A\vec{A} and B\vec{B} is given by the formula: A+B2=A2+B2+2ABcosθ|\vec{A} + \vec{B}|^2 = |\vec{A}|^2 + |\vec{B}|^2 + 2|\vec{A}||\vec{B}|\cos\theta where θ\theta is the angle between A\vec{A} and B\vec{B}.

Given the condition A+B=A=B|\vec{A} + \vec{B}| = |\vec{A}| = |\vec{B}|. Let A=B=A+B=k|\vec{A}| = |\vec{B}| = |\vec{A} + \vec{B}| = k. Substituting these into the formula: k2=k2+k2+2(k)(k)cosθk^2 = k^2 + k^2 + 2(k)(k)\cos\theta k2=2k2+2k2cosθk^2 = 2k^2 + 2k^2\cos\theta

Assuming k0k \neq 0 (for non-trivial vectors), we can divide the equation by k2k^2: 1=2+2cosθ1 = 2 + 2\cos\theta Rearranging the terms to solve for cosθ\cos\theta: 2cosθ=122\cos\theta = 1 - 2 2cosθ=12\cos\theta = -1 cosθ=12\cos\theta = -\frac{1}{2}

The angle θ\theta whose cosine is 12-\frac{1}{2} is 120120^\circ.