Solveeit Logo

Question

Question: Latus rectum of ellipse \(4{x^2} + 9{y^2} - 8x - 36y + 4 = 0\) \( {\text{A}}{\text{.}}\dfrac{8}{...

Latus rectum of ellipse 4x2+9y28x36y+4=04{x^2} + 9{y^2} - 8x - 36y + 4 = 0
A.83 B.43 C.53 D.163  {\text{A}}{\text{.}}\dfrac{8}{3} \\\ {\text{B}}{\text{.}}\dfrac{4}{3} \\\ {\text{C}}{\text{.}}\dfrac{{\sqrt 5 }}{3} \\\ {\text{D}}{\text{.}}\dfrac{{16}}{3} \\\

Explanation

Solution

Hint: In this question compare the given equation representing the ellipse with the standard equation of the ellipse and then find the values of a and b for getting the latus rectum.

Complete step-by-step answer:
Given equation:
4x2+9y28x36y+4=0 4{x^2} + 9{y^2} - 8x - 36y + 4 = 0
4x28x+9y236y+4=0\Rightarrow 4{x^2} - 8x + 9{y^2} - 36y + 4 = 0
taking 4 common from 4x28x4{x^2} - 8x and 9 common from 9y236y9{y^2} - 36y then equation can be written as:
4(x22x+1)4+9(y24y+4)36+4=04\left( {{x^2} - 2x + 1} \right) - 4 + 9\left( {{y^2} - 4y + 4} \right) - 36 + 4 = 0
now (x22x+1)\left( {{x^2} - 2x + 1} \right) can be written as (x1)2{\left( {x - 1} \right)^2}
and (y24y+4)\left( {{y^2} - 4y + 4} \right) can be written as (y2)2{\left( {y - 2} \right)^2}
therefore complete equation can now be written as:
4(x1)2+9(y2)2=364{\left( {x - 1} \right)^2} + 9{\left( {y - 2} \right)^2} = 36
divide both side by 36 then we get,
(x1)29+(y2)24=1\dfrac{{{{\left( {x - 1} \right)}^2}}}{9} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{4} = 1
now compare with standard equation where h,k{\text{h,k}} are the coordinate of the centre of ellipse
(xh)2a2+(yk)2b2=1 a2=9a=3 b2=4b=2  \dfrac{{{{\left( {x - h} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - k} \right)}^2}}}{{{b^2}}} = 1 \\\ {a^2} = 9 \Rightarrow a = 3 \\\ {b^2} = 4 \Rightarrow b = 2 \\\
Formula for Latus rectum =2b2a = \dfrac{{2{b^2}}}{a}
putting values of a=2a = 2 and b=3b = 3
2b2a=2×43=83\Rightarrow \dfrac{{2{b^2}}}{a} = \dfrac{{2 \times 4}}{3} = \dfrac{8}{3}
Hence the required value is 83\dfrac{8}{3}.

Note: In this question first we simplified the given equation of ellipse in a way that it can be compared to the standard equation of ellipse and hence we found the value of aa and bb, after that we put the value of these two component in the formula of latus rectum and got the required value.