Question
Question: Last two digits of the number $19^{94}$ is (for example, if last two digits are 06 report 6 and if l...
Last two digits of the number 1994 is (for example, if last two digits are 06 report 6 and if last two digits are 23 report 23 as answer)
Answer
21
Explanation
Solution
Solution:
We need to find 1994mod100.
-
Modulo 4:
19≡3(mod4)⇒1994≡394≡(−1)94≡1(mod4). -
Modulo 25: ϕ(25)=20, so 1920≡1(mod25). Reduce the exponent:
94mod20=14⇒1994≡1914(mod25).Write 1914=(192)7. Calculate:
192=361≡11(mod25).Thus, we need 117mod25:
112≡121≡21(mod25), 113≡11⋅21=231≡6(mod25), 114≡6⋅11=66≡16(mod25), 115≡16⋅11=176≡1(mod25).Hence,
117≡115⋅112≡1⋅21≡21(mod25). -
Using the Chinese Remainder Theorem (CRT): We have:
x≡21(mod25)andx≡1(mod4).Write x=21+25k. Then:
21+25k≡1(mod4).Since 21≡1(mod4) and 25≡1(mod4), it follows:
1+k≡1(mod4)⇒k≡0(mod4).Hence, k=0 gives:
x=21.
Therefore, the last two digits of 1994 are 21.
Core Explanation (Minimal):
- 1994mod4=1.
- 1994mod25≡1914≡(192)7, where 192≡11 and 117≡21.
- Using CRT: x≡21(mod25) and x≡1(mod4) gives x=21.