Solveeit Logo

Question

Question: Last two digits of the number $19^{94}$ is (for example, if last two digits are 06 report 6 and if l...

Last two digits of the number 199419^{94} is (for example, if last two digits are 06 report 6 and if last two digits are 23 report 23 as answer)

Answer

21

Explanation

Solution

Solution:

We need to find 1994mod10019^{94} \mod 100.

  1. Modulo 4:

    193(mod4)1994394(1)941(mod4).19 \equiv 3 \pmod{4} \quad \Rightarrow \quad 19^{94} \equiv 3^{94} \equiv (-1)^{94} \equiv 1 \pmod{4}.
  2. Modulo 25: ϕ(25)=20\phi(25)=20, so 19201(mod25)19^{20} \equiv 1 \pmod{25}. Reduce the exponent:

    94mod20=1419941914(mod25).94 \mod 20 = 14 \quad \Rightarrow \quad 19^{94} \equiv 19^{14} \pmod{25}.

    Write 1914=(192)719^{14} = (19^2)^7. Calculate:

    192=36111(mod25).19^2 = 361 \equiv 11 \pmod{25}.

    Thus, we need 117mod2511^7 \mod 25:

    11212121(mod25),11^2 \equiv 121 \equiv 21 \pmod{25}, 1131121=2316(mod25),11^3 \equiv 11 \cdot 21 = 231 \equiv 6 \pmod{25}, 114611=6616(mod25),11^4 \equiv 6 \cdot 11 = 66 \equiv 16 \pmod{25}, 1151611=1761(mod25).11^5 \equiv 16 \cdot 11 = 176 \equiv 1 \pmod{25}.

    Hence,

    11711511212121(mod25).11^7 \equiv 11^5 \cdot 11^2 \equiv 1 \cdot 21 \equiv 21 \pmod{25}.
  3. Using the Chinese Remainder Theorem (CRT): We have:

    x21(mod25)andx1(mod4).x \equiv 21 \pmod{25} \quad \text{and} \quad x \equiv 1 \pmod{4}.

    Write x=21+25kx = 21 + 25k. Then:

    21+25k1(mod4).21 + 25k \equiv 1 \pmod{4}.

    Since 211(mod4)21 \equiv 1 \pmod{4} and 251(mod4)25 \equiv 1 \pmod{4}, it follows:

    1+k1(mod4)k0(mod4).1 + k \equiv 1 \pmod{4} \quad \Rightarrow \quad k \equiv 0 \pmod{4}.

    Hence, k=0k = 0 gives:

    x=21.x = 21.

Therefore, the last two digits of 199419^{94} are 21.


Core Explanation (Minimal):

  1. 1994mod4=119^{94} \mod 4=1.
  2. 1994mod251914(192)719^{94} \mod 25 \equiv 19^{14} \equiv (19^2)^7, where 1921119^2 \equiv 11 and 1172111^7 \equiv 21.
  3. Using CRT: x21(mod25)x \equiv 21 \pmod{25} and x1(mod4)x \equiv 1 \pmod{4} gives x=21x = 21.