Solveeit Logo

Question

Question: last 2 digits of 19^36...

last 2 digits of 19^36

Answer

81

Explanation

Solution

We need to find the last two digits of 193619^{36}, i.e., compute 1936mod10019^{36} \mod 100.

  1. Modulo 4 Calculation:

    Since 193(mod4)19 \equiv 3 \pmod{4} and 31(mod4)3 \equiv -1 \pmod{4}, we have:

    1936336(1)361(mod4).19^{36} \equiv 3^{36} \equiv (-1)^{36} \equiv 1 \pmod{4}.
  2. Modulo 25 Calculation:

    Using Euler’s Totient Theorem, note that ϕ(25)=20\phi(25) = 20 so that:

    19201(mod25).19^{20} \equiv 1 \pmod{25}.

    Reduce the exponent:

    36mod20=1619361916(mod25).36 \mod 20 = 16 \quad \Rightarrow \quad 19^{36} \equiv 19^{16} \pmod{25}.

    Write 191619^{16} as:

    1916=(192)8.19^{16} = (19^2)^8.

    Now, calculate:

    192=36111(mod25).19^2 = 361 \equiv 11 \pmod{25}.

    So,

    1936118(mod25).19^{36} \equiv 11^8 \pmod{25}.

    Next, compute 11811^8 using successive squaring:

    11212121(mod25),11^2 \equiv 121 \equiv 21 \pmod{25}, 114212=44116(mod25),11^4 \equiv 21^2 = 441 \equiv 16 \pmod{25}, 118162=2566(mod25).11^8 \equiv 16^2 = 256 \equiv 6 \pmod{25}.

    Thus,

    19366(mod25).19^{36} \equiv 6 \pmod{25}.
  3. Using the Chinese Remainder Theorem (CRT):

    We have the system:

    x1(mod4)andx6(mod25).x \equiv 1 \pmod{4} \quad \text{and} \quad x \equiv 6 \pmod{25}.

    Write x=6+25kx = 6 + 25k for some integer kk. Now, substitute into the first congruence:

    6+25k1(mod4).6 + 25k \equiv 1 \pmod{4}.

    As 62(mod4)6 \equiv 2 \pmod{4} and 251(mod4)25 \equiv 1 \pmod{4}, we simplify:

    2+k1(mod4)k13(mod4).2 + k \equiv 1 \pmod{4} \quad \Rightarrow \quad k \equiv -1 \equiv 3 \pmod{4}.

    So, let k=3k = 3 (the smallest positive solution). Then:

    x=6+25(3)=6+75=81.x = 6 + 25(3) = 6 + 75 = 81.

Thus, the last two digits of 193619^{36} are 81.