Question
Question: last 2 digits of 19^36...
last 2 digits of 19^36
Answer
81
Explanation
Solution
We need to find the last two digits of 1936, i.e., compute 1936mod100.
-
Modulo 4 Calculation:
Since 19≡3(mod4) and 3≡−1(mod4), we have:
1936≡336≡(−1)36≡1(mod4). -
Modulo 25 Calculation:
Using Euler’s Totient Theorem, note that ϕ(25)=20 so that:
1920≡1(mod25).Reduce the exponent:
36mod20=16⇒1936≡1916(mod25).Write 1916 as:
1916=(192)8.Now, calculate:
192=361≡11(mod25).So,
1936≡118(mod25).Next, compute 118 using successive squaring:
112≡121≡21(mod25), 114≡212=441≡16(mod25), 118≡162=256≡6(mod25).Thus,
1936≡6(mod25). -
Using the Chinese Remainder Theorem (CRT):
We have the system:
x≡1(mod4)andx≡6(mod25).Write x=6+25k for some integer k. Now, substitute into the first congruence:
6+25k≡1(mod4).As 6≡2(mod4) and 25≡1(mod4), we simplify:
2+k≡1(mod4)⇒k≡−1≡3(mod4).So, let k=3 (the smallest positive solution). Then:
x=6+25(3)=6+75=81.
Thus, the last two digits of 1936 are 81.