Solveeit Logo

Question

Question: $\Lambda_m$ of a decimolar $CaCl_2$ solution is $100 \frac{S cm^2}{mol}$ at 298 K. Cell with electro...

Λm\Lambda_m of a decimolar CaCl2CaCl_2 solution is 100Scm2mol100 \frac{S cm^2}{mol} at 298 K. Cell with electrodes 1.5 cm2cm^2 in area and 12\frac{1}{2} cm apart is filled with decimolar CaCl2CaCl_2. Current flown in amperes when the potential difference between electrodes is 5 volts is

Answer

0.15

Explanation

Solution

To calculate the current flowing through the electrochemical cell, we follow these steps:

  1. Calculate the Cell Constant (GG^*): The cell constant is defined as the ratio of the distance between the electrodes (ll) to the area of the electrodes (AA). Given: l=0.5 cml = 0.5 \text{ cm}, A=1.5 cm2A = 1.5 \text{ cm}^2 G=lA=0.5 cm1.5 cm2=13 cm1G^* = \frac{l}{A} = \frac{0.5 \text{ cm}}{1.5 \text{ cm}^2} = \frac{1}{3} \text{ cm}^{-1}

  2. Calculate the Specific Conductivity (κ\kappa): The molar conductivity (Λm\Lambda_m) is related to the specific conductivity (κ\kappa) and the concentration (CC) by the formula: Λm=κ×1000C\Lambda_m = \frac{\kappa \times 1000}{C} Where Λm\Lambda_m is in S cm2^2 mol1^{-1}, κ\kappa is in S cm1^{-1}, and CC is in mol L1^{-1}. Given: Λm=100 S cm2 mol1\Lambda_m = 100 \text{ S cm}^2 \text{ mol}^{-1}, C=0.1 M=0.1 mol L1C = 0.1 \text{ M} = 0.1 \text{ mol L}^{-1} Rearranging the formula to find κ\kappa: κ=Λm×C1000\kappa = \frac{\Lambda_m \times C}{1000} κ=100 S cm2 mol1×0.1 mol L11000\kappa = \frac{100 \text{ S cm}^2 \text{ mol}^{-1} \times 0.1 \text{ mol L}^{-1}}{1000} κ=101000 S cm1\kappa = \frac{10}{1000} \text{ S cm}^{-1} κ=0.01 S cm1\kappa = 0.01 \text{ S cm}^{-1}

  3. Calculate the Conductance (G): Conductance (GG) is related to specific conductivity (κ\kappa) and cell constant (GG^*) by the formula: G=κGG = \frac{\kappa}{G^*} G=0.01 S cm11/3 cm1G = \frac{0.01 \text{ S cm}^{-1}}{1/3 \text{ cm}^{-1}} G=0.01×3 SG = 0.01 \times 3 \text{ S} G=0.03 SG = 0.03 \text{ S}

  4. Calculate the Current (I): According to Ohm's Law, the current (II) is given by the potential difference (VV) divided by the resistance (RR). Since conductance (GG) is the reciprocal of resistance (R=1/GR = 1/G), we can write: I=VR=V×GI = \frac{V}{R} = V \times G Given: V=5 voltsV = 5 \text{ volts} I=5 V×0.03 SI = 5 \text{ V} \times 0.03 \text{ S} I=0.15 AI = 0.15 \text{ A}

The current flown in amperes is 0.15 A.