Solveeit Logo

Question

Question: $\Lambda_m$ for 0.01 M nicotinic acid (weak monoprotic acid) is 10 times smaller than that of 0.1 M ...

Λm\Lambda_m for 0.01 M nicotinic acid (weak monoprotic acid) is 10 times smaller than that of 0.1 M formic acid. If

λnicotinateion=λformateion\lambda_{nicotinate ion}^{\circ} = \lambda_{formate ion}^{\circ} then, (α<<1 for both acids)(\alpha << 1 \text{ for both acids})

A

(pKa)nicotinic acid(pKa)formic acid=3|(pK_a)_{nicotinic \text{ }acid} - (pK_a)_{formic \text{ }acid}| = 3

B

(Ka)nicotinic acid(Ka)formic acid=102\frac{(K_a)_{nicotinic \text{ }acid}}{(K_a)_{formic \text{ }acid}} = 10^2

C

(Ka)formic acid(Ka)nicotinic acid=103\frac{(K_a)_{formic \text{ }acid}}{(K_a)_{nicotinic \text{ }acid}} = 10^3

D

(pKa)formic acid(pKa)nicotinic acid=2(pK_a)_{formic \text{ }acid} - (pK_a)_{nicotinic \text{ }acid} = -2

Answer

A, C

Explanation

Solution

The problem involves comparing the dissociation constants (KaK_a) and pKapK_a values of two weak monoprotic acids: nicotinic acid (HA1) and formic acid (HA2), based on their molar conductivities.

1. Given Information and Relationships:

  • Nicotinic Acid (HA1):

    • Concentration, C1=0.01C_1 = 0.01 M
    • Molar conductivity, Λm1\Lambda_{m1}
    • Degree of dissociation, α1\alpha_1
    • Dissociation constant, (Ka)1(K_a)_1
  • Formic Acid (HA2):

    • Concentration, C2=0.1C_2 = 0.1 M
    • Molar conductivity, Λm2\Lambda_{m2}
    • Degree of dissociation, α2\alpha_2
    • Dissociation constant, (Ka)2(K_a)_2
  • Conductivity Relationship: Λm1=110Λm2\Lambda_{m1} = \frac{1}{10} \Lambda_{m2}

  • Limiting Molar Conductivity of Ions: λnicotinateion=λformateion\lambda_{nicotinate ion}^{\circ} = \lambda_{formate ion}^{\circ}

  • Approximation: α<<1\alpha << 1 for both acids.

2. Limiting Molar Conductivities of Acids (Λm\Lambda_m^{\circ}):

For a monoprotic acid HA, Λm=λH++λA\Lambda_m^{\circ} = \lambda_{H^+}^{\circ} + \lambda_{A^-}^{\circ}.

  • For nicotinic acid: Λm1=λH++λnicotinateion\Lambda_{m1}^{\circ} = \lambda_{H^+}^{\circ} + \lambda_{nicotinate ion}^{\circ}
  • For formic acid: Λm2=λH++λformateion\Lambda_{m2}^{\circ} = \lambda_{H^+}^{\circ} + \lambda_{formate ion}^{\circ}

Since λnicotinateion=λformateion\lambda_{nicotinate ion}^{\circ} = \lambda_{formate ion}^{\circ}, it implies that Λm1=Λm2\Lambda_{m1}^{\circ} = \Lambda_{m2}^{\circ}. Let's denote this common value as Λ\Lambda^{\circ}.

3. Relation between Molar Conductivity and Degree of Dissociation:

The degree of dissociation (α\alpha) for a weak electrolyte is given by α=ΛmΛm\alpha = \frac{\Lambda_m}{\Lambda_m^{\circ}}. So, Λm=αΛm\Lambda_m = \alpha \Lambda_m^{\circ}.

  • For nicotinic acid: Λm1=α1Λ\Lambda_{m1} = \alpha_1 \Lambda^{\circ}
  • For formic acid: Λm2=α2Λ\Lambda_{m2} = \alpha_2 \Lambda^{\circ}

4. Using the Given Conductivity Relationship:

Substitute the expressions for Λm1\Lambda_{m1} and Λm2\Lambda_{m2} into the given relation Λm1=110Λm2\Lambda_{m1} = \frac{1}{10} \Lambda_{m2}: α1Λ=110(α2Λ)\alpha_1 \Lambda^{\circ} = \frac{1}{10} (\alpha_2 \Lambda^{\circ}) Since Λ0\Lambda^{\circ} \neq 0, we can cancel it out: α1=110α2    α2=10α1\alpha_1 = \frac{1}{10} \alpha_2 \implies \alpha_2 = 10 \alpha_1

5. Relation between Degree of Dissociation and Dissociation Constant (KaK_a):

For a weak acid HA, HAH++AHA \rightleftharpoons H^+ + A^-.

At equilibrium, concentrations are C(1α)C(1-\alpha), CαC\alpha, CαC\alpha. The dissociation constant is Ka=[H+][A][HA]=(Cα)(Cα)C(1α)=Cα21αK_a = \frac{[H^+][A^-]}{[HA]} = \frac{(C\alpha)(C\alpha)}{C(1-\alpha)} = \frac{C\alpha^2}{1-\alpha}. Given that α<<1\alpha << 1, we can approximate 1α11-\alpha \approx 1. So, Ka=Cα2K_a = C\alpha^2. This implies α=KaC\alpha = \sqrt{\frac{K_a}{C}}.

6. Applying to Both Acids:

  • For nicotinic acid: (Ka)1=C1α12=0.01α12(K_a)_1 = C_1 \alpha_1^2 = 0.01 \alpha_1^2
  • For formic acid: (Ka)2=C2α22=0.1α22(K_a)_2 = C_2 \alpha_2^2 = 0.1 \alpha_2^2

7. Substituting α2=10α1\alpha_2 = 10 \alpha_1 into the KaK_a expression for formic acid:

(Ka)2=0.1(10α1)2=0.1(100α12)=10α12(K_a)_2 = 0.1 (10 \alpha_1)^2 = 0.1 (100 \alpha_1^2) = 10 \alpha_1^2

8. Finding the Ratio of KaK_a Values:

Now, let's find the ratio of the dissociation constants: (Ka)2(Ka)1=10α120.01α12=100.01=101/100=10×100=1000\frac{(K_a)_2}{(K_a)_1} = \frac{10 \alpha_1^2}{0.01 \alpha_1^2} = \frac{10}{0.01} = \frac{10}{1/100} = 10 \times 100 = 1000 So, (Ka)formic acid(Ka)nicotinic acid=103\frac{(K_a)_{formic \text{ }acid}}{(K_a)_{nicotinic \text{ }acid}} = 10^3. This matches option C.

9. Finding the Relationship between pKapK_a Values:

We know that pKa=logKapK_a = -\log K_a. From (Ka)formic acid(Ka)nicotinic acid=103\frac{(K_a)_{formic \text{ }acid}}{(K_a)_{nicotinic \text{ }acid}} = 10^3: Take logarithm on both sides: log((Ka)formic acid(Ka)nicotinic acid)=log(103)\log \left( \frac{(K_a)_{formic \text{ }acid}}{(K_a)_{nicotinic \text{ }acid}} \right) = \log(10^3) log(Ka)formic acidlog(Ka)nicotinic acid=3\log (K_a)_{formic \text{ }acid} - \log (K_a)_{nicotinic \text{ }acid} = 3 Multiply by -1: (log(Ka)formic acidlog(Ka)nicotinic acid)=3-(\log (K_a)_{formic \text{ }acid} - \log (K_a)_{nicotinic \text{ }acid}) = -3 (log(Ka)formic acid)(log(Ka)nicotinic acid)=3(-\log (K_a)_{formic \text{ }acid}) - (-\log (K_a)_{nicotinic \text{ }acid}) = -3 (pKa)formic acid(pKa)nicotinic acid=3(pK_a)_{formic \text{ }acid} - (pK_a)_{nicotinic \text{ }acid} = -3

Now, let's check the options:

  • A. (pKa)nicotinic acid(pKa)formic acid=3|(pK_a)_{nicotinic \text{ }acid} - (pK_a)_{formic \text{ }acid}| = 3 From our result, (pKa)nicotinic acid(pKa)formic acid=3(pK_a)_{nicotinic \text{ }acid} - (pK_a)_{formic \text{ }acid} = 3. So, (pKa)nicotinic acid(pKa)formic acid=3=3|(pK_a)_{nicotinic \text{ }acid} - (pK_a)_{formic \text{ }acid}| = |3| = 3. This option is correct.
  • B. (Ka)nicotinic acid(Ka)formic acid=102\frac{(K_a)_{nicotinic \text{ }acid}}{(K_a)_{formic \text{ }acid}} = 10^2 From our result, (Ka)nicotinic acid(Ka)formic acid=1103=103\frac{(K_a)_{nicotinic \text{ }acid}}{(K_a)_{formic \text{ }acid}} = \frac{1}{10^3} = 10^{-3}. This option is incorrect.
  • C. (Ka)formic acid(Ka)nicotinic acid=103\frac{(K_a)_{formic \text{ }acid}}{(K_a)_{nicotinic \text{ }acid}} = 10^3 This matches our derived result. This option is correct.
  • D. (pKa)formic acid(pKa)nicotinic acid=2(pK_a)_{formic \text{ }acid} - (pK_a)_{nicotinic \text{ }acid} = -2 From our result, (pKa)formic acid(pKa)nicotinic acid=3(pK_a)_{formic \text{ }acid} - (pK_a)_{nicotinic \text{ }acid} = -3. This option is incorrect.

Both options A and C are correct based on the calculations.

The final answer is A,C\boxed{A, C}

Explanation of the solution:

  1. Equate limiting molar conductivities: Since the limiting molar conductivities of the anions are equal (λnicotinateion=λformateion\lambda_{nicotinate ion}^{\circ} = \lambda_{formate ion}^{\circ}) and both acids share the λH+\lambda_{H^+}^{\circ} component, their limiting molar conductivities (Λm\Lambda_m^{\circ}) are equal.
  2. Relate Λm\Lambda_m and α\alpha: Use the formula Λm=αΛm\Lambda_m = \alpha \Lambda_m^{\circ}. Given Λm,nic=110Λm,form\Lambda_{m,nic} = \frac{1}{10} \Lambda_{m,form} and Λm,nic=Λm,form\Lambda_{m,nic}^{\circ} = \Lambda_{m,form}^{\circ}, it leads to αnic=110αform\alpha_{nic} = \frac{1}{10} \alpha_{form}, or αform=10αnic\alpha_{form} = 10 \alpha_{nic}.
  3. Relate KaK_a and α\alpha: For weak acids with α<<1\alpha << 1, Ka=Cα2K_a = C\alpha^2.
  4. Calculate KaK_a ratio: Substitute the concentrations (Cnic=0.01C_{nic} = 0.01 M, Cform=0.1C_{form} = 0.1 M) and the relationship between α\alpha values into the KaK_a expressions. (Ka)nic=0.01αnic2(K_a)_{nic} = 0.01 \alpha_{nic}^2 (Ka)form=0.1αform2=0.1(10αnic)2=0.1(100αnic2)=10αnic2(K_a)_{form} = 0.1 \alpha_{form}^2 = 0.1 (10 \alpha_{nic})^2 = 0.1 (100 \alpha_{nic}^2) = 10 \alpha_{nic}^2 The ratio (Ka)form(Ka)nic=10αnic20.01αnic2=100.01=1000=103\frac{(K_a)_{form}}{(K_a)_{nic}} = \frac{10 \alpha_{nic}^2}{0.01 \alpha_{nic}^2} = \frac{10}{0.01} = 1000 = 10^3. This confirms option C.
  5. Calculate pKapK_a difference: Use the relation pKa=logKapK_a = -\log K_a. From (Ka)form(Ka)nic=103\frac{(K_a)_{form}}{(K_a)_{nic}} = 10^3, taking negative logarithm yields (pKa)form(pKa)nic=3(pK_a)_{form} - (pK_a)_{nic} = -3. Therefore, (pKa)nic(pKa)form=3(pK_a)_{nic} - (pK_a)_{form} = 3. So, (pKa)nic(pKa)form=3=3|(pK_a)_{nic} - (pK_a)_{form}| = |3| = 3. This confirms option A.