Solveeit Logo

Question

Question: $\L_2 = \lim_{x\to\infty} \int_0^x \frac{(1+\cos t)^2}{x}dt$...

\L2=limx0x(1+cost)2xdt\L_2 = \lim_{x\to\infty} \int_0^x \frac{(1+\cos t)^2}{x}dt

Answer

3/2

Explanation

Solution

We need to evaluate:

L2=limx1x0x(1+cost)2dt.L_2 = \lim_{x\to\infty}\frac{1}{x}\int_0^x (1+\cos t)^2\,dt.
  1. Expand the integrand:

    (1+cost)2=1+2cost+cos2t.(1+\cos t)^2 = 1 + 2\cos t + \cos^2 t.
  2. Use the identity for cos2t\cos^2 t:

    cos2t=1+cos2t2.\cos^2 t = \frac{1+\cos 2t}{2}.

    So,

    (1+cost)2=1+2cost+1+cos2t2=32+2cost+12cos2t.(1+\cos t)^2 = 1 + 2\cos t + \frac{1+\cos 2t}{2} = \frac{3}{2} + 2\cos t + \frac{1}{2}\cos2t.
  3. Integrate term by term:

    0x32dt=32x,\int_0^x \frac{3}{2}\,dt = \frac{3}{2}x, 0x2costdt=2sint0x=2sinx,\int_0^x 2\cos t\,dt = 2\sin t\Big|_0^x = 2\sin x, 0x12cos2tdt=1212sin2t0x=14sin2x.\int_0^x \frac{1}{2}\cos2t\,dt = \frac{1}{2}\cdot\frac{1}{2}\sin2t\Big|_0^x = \frac{1}{4}\sin2x.
  4. Combine the results:

    0x(1+cost)2dt=32x+2sinx+14sin2x.\int_0^x (1+\cos t)^2\,dt = \frac{3}{2}x + 2\sin x + \frac{1}{4}\sin2x.
  5. Divide by xx and take the limit:

    L2=limx(32+2sinxx+sin2x4x).L_2 = \lim_{x\to\infty} \left(\frac{3}{2} + \frac{2\sin x}{x} + \frac{\sin2x}{4x}\right).

    As xx\to\infty, the terms 2sinxx\frac{2\sin x}{x} and sin2x4x\frac{\sin2x}{4x} approach 0. Thus,

    L2=32.L_2 = \frac{3}{2}.

Core Explanation:

  • Expand (1+cost)2(1+\cos t)^2 and simplify.
  • Integrate each term and divide by xx.
  • In the limit, oscillatory sine terms vanish.