Solveeit Logo

Question

Question: l2a, b are the roots of the equation x<sup>2</sup> – 3x + a = 0 and g, d are the roots of the equati...

l2a, b are the roots of the equation x2 – 3x + a = 0 and g, d are the roots of the equation x2 – 12x + b = 0. If a, b, g, d form an increasing, GP, then (a, b) is equal to-

A

(3, 12)

B

(12, 3)

C

(2, 32)

D

(4, 16)

Answer

(2, 32)

Explanation

Solution

Since a, b, g, d form an increasing GP.

So ad = bg where a < b < g < d …(i)

We have, x2 – 3x + a = 0

Ž x = 12\frac{1}{2} (3 ±94a\sqrt{9 - 4a})

Also a < b

Hence, a = 12\frac{1}{2} (3 – 94a\sqrt{9 - 4a})

and b = 12\frac{1}{2} (3 + 94a\sqrt{9 - 4a})

Similarly, from x2 – 12x + b = 0

Ž x = 12±1444b2\frac{12 \pm \sqrt{144 - 4b}}{2}

Since, g < d

\ g = 12\frac{1}{2} (12 – 1444b\sqrt{144 - 4b})

and d = 12\frac{1}{2} (12 + 1444b\sqrt{144 - 4b})

Substituting these values of a, b, g, d in Equation. (i)

12\frac{1}{2} (3 –94a\sqrt{9 - 4a}) .12\frac{1}{2} (12 +1444b\sqrt{144 - 4b})

= 12\frac{1}{2} (3 + 94a\sqrt{9 - 4a}). 12\frac{1}{2} (12 – 1444b\sqrt{144 - 4b}).

Only the option (3) (2, 32) satisfy the equation.