Solveeit Logo

Question

Question: $\qquad L = \lim_{x \to 0} \frac{2(\csc x - n \cot 2x)}{x^3(\cot x \csc x - \sec x)}$ = some integer...

L=limx02(cscxncot2x)x3(cotxcscxsecx)\qquad L = \lim_{x \to 0} \frac{2(\csc x - n \cot 2x)}{x^3(\cot x \csc x - \sec x)} = some integer and nIn \in I, then the value of n+Ln + L is ____.

Answer

5

Explanation

Solution

To evaluate the limit L=limx02(cscxncot2x)x3(cotxcscxsecx)L = \lim_{x \to 0} \frac{2(\csc x - n \cot 2x)}{x^3(\cot x \csc x - \sec x)}, we first simplify the expression by converting trigonometric functions into sinx\sin x and cosx\cos x.

Step 1: Simplify the numerator

Numerator N(x)=2(cscxncot2x)N(x) = 2(\csc x - n \cot 2x)

N(x)=2(1sinxncos2xsin2x)N(x) = 2\left(\frac{1}{\sin x} - n \frac{\cos 2x}{\sin 2x}\right)

Using sin2x=2sinxcosx\sin 2x = 2 \sin x \cos x:

N(x)=2(1sinxncos2x2sinxcosx)N(x) = 2\left(\frac{1}{\sin x} - n \frac{\cos 2x}{2 \sin x \cos x}\right)

N(x)=2sinx(1ncos2x2cosx)N(x) = \frac{2}{\sin x}\left(1 - \frac{n \cos 2x}{2 \cos x}\right)

N(x)=2sinx(2cosxncos2x2cosx)N(x) = \frac{2}{\sin x}\left(\frac{2 \cos x - n \cos 2x}{2 \cos x}\right)

N(x)=2cosxncos2xsinxcosxN(x) = \frac{2 \cos x - n \cos 2x}{\sin x \cos x}

Step 2: Simplify the denominator

Denominator D(x)=x3(cotxcscxsecx)D(x) = x^3(\cot x \csc x - \sec x)

D(x)=x3(cosxsinx1sinx1cosx)D(x) = x^3\left(\frac{\cos x}{\sin x} \cdot \frac{1}{\sin x} - \frac{1}{\cos x}\right)

D(x)=x3(cosxsin2x1cosx)D(x) = x^3\left(\frac{\cos x}{\sin^2 x} - \frac{1}{\cos x}\right)

D(x)=x3(cos2xsin2xsin2xcosx)D(x) = x^3\left(\frac{\cos^2 x - \sin^2 x}{\sin^2 x \cos x}\right)

Using cos2xsin2x=cos2x\cos^2 x - \sin^2 x = \cos 2x:

D(x)=x3(cos2xsin2xcosx)D(x) = x^3\left(\frac{\cos 2x}{\sin^2 x \cos x}\right)

Step 3: Substitute simplified expressions into the limit

L=limx02cosxncos2xsinxcosxx3(cos2xsin2xcosx)L = \lim_{x \to 0} \frac{\frac{2 \cos x - n \cos 2x}{\sin x \cos x}}{x^3\left(\frac{\cos 2x}{\sin^2 x \cos x}\right)}

L=limx02cosxncos2xsinxcosxsin2xcosxx3cos2xL = \lim_{x \to 0} \frac{2 \cos x - n \cos 2x}{\sin x \cos x} \cdot \frac{\sin^2 x \cos x}{x^3 \cos 2x}

L=limx0(2cosxncos2x)sinxx3cos2xL = \lim_{x \to 0} \frac{(2 \cos x - n \cos 2x) \sin x}{x^3 \cos 2x}

We can rewrite this as:

L=limx02cosxncos2xx2sinxx1cos2xL = \lim_{x \to 0} \frac{2 \cos x - n \cos 2x}{x^2} \cdot \frac{\sin x}{x} \cdot \frac{1}{\cos 2x}

Step 4: Evaluate the limit using standard limit forms

As x0x \to 0, we know:

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

limx0cos2x=cos0=1\lim_{x \to 0} \cos 2x = \cos 0 = 1

So, the limit simplifies to:

L=limx02cosxncos2xx211L = \lim_{x \to 0} \frac{2 \cos x - n \cos 2x}{x^2} \cdot 1 \cdot 1

L=limx02cosxncos2xx2L = \lim_{x \to 0} \frac{2 \cos x - n \cos 2x}{x^2}

Step 5: Determine the value of n

For the limit to be finite (as LL is an integer), the numerator must approach 0 as x0x \to 0 (since the denominator approaches 0).

Let f(x)=2cosxncos2xf(x) = 2 \cos x - n \cos 2x.

f(0)=2cos0ncos0=2(1)n(1)=2nf(0) = 2 \cos 0 - n \cos 0 = 2(1) - n(1) = 2 - n.

For the limit to be of the form 00\frac{0}{0}, we must have 2n=02 - n = 0, which implies n=2n = 2.

Step 6: Calculate the value of L using n=2

Substitute n=2n=2 into the limit expression:

L=limx02cosx2cos2xx2L = \lim_{x \to 0} \frac{2 \cos x - 2 \cos 2x}{x^2}

This is of the form 00\frac{0}{0}, so we can apply L'Hopital's Rule.

Differentiate the numerator and denominator with respect to xx:

ddx(2cosx2cos2x)=2sinx2(sin2x)(2)=2sinx+4sin2x\frac{d}{dx}(2 \cos x - 2 \cos 2x) = -2 \sin x - 2(-\sin 2x)(2) = -2 \sin x + 4 \sin 2x

ddx(x2)=2x\frac{d}{dx}(x^2) = 2x

So, L=limx02sinx+4sin2x2xL = \lim_{x \to 0} \frac{-2 \sin x + 4 \sin 2x}{2x}

L=limx0(2sinx2x+4sin2x2x)L = \lim_{x \to 0} \left(\frac{-2 \sin x}{2x} + \frac{4 \sin 2x}{2x}\right)

L=limx0(sinxx+2sin2xx)L = \lim_{x \to 0} \left(-\frac{\sin x}{x} + 2 \frac{\sin 2x}{x}\right)

To use the standard limit limy0sinyy=1\lim_{y \to 0} \frac{\sin y}{y} = 1, we adjust the second term:

L=limx0(sinxx+4sin2x2x)L = \lim_{x \to 0} \left(-\frac{\sin x}{x} + 4 \frac{\sin 2x}{2x}\right)

L=(1)+4(1)L = -(1) + 4(1)

L=1+4=3L = -1 + 4 = 3.

Alternatively, using Taylor series expansion:

cosx=1x22!+O(x4)\cos x = 1 - \frac{x^2}{2!} + O(x^4)

cos2x=1(2x)22!+O(x4)=12x2+O(x4)\cos 2x = 1 - \frac{(2x)^2}{2!} + O(x^4) = 1 - 2x^2 + O(x^4)

Numerator =2cosx2cos2x=2(1x22)2(12x2)+O(x4)= 2 \cos x - 2 \cos 2x = 2\left(1 - \frac{x^2}{2}\right) - 2(1 - 2x^2) + O(x^4)

=(2x2)(24x2)+O(x4)= (2 - x^2) - (2 - 4x^2) + O(x^4)

=3x2+O(x4)= 3x^2 + O(x^4)

L=limx03x2+O(x4)x2=limx0(3+O(x2))=3L = \lim_{x \to 0} \frac{3x^2 + O(x^4)}{x^2} = \lim_{x \to 0} (3 + O(x^2)) = 3.

Step 7: Calculate n+L

We found n=2n=2 and L=3L=3.

n+L=2+3=5n+L = 2+3 = 5.

The final answer is 5\boxed{5}.