Solveeit Logo

Question

Question: The function $f(x) = \begin{cases} (\frac{6}{5})^{\frac{tan6x}{tan5x}}, & \text{if } 0 < x < \frac{\...

The function f(x)={(65)tan6xtan5x,if 0<x<π2b+2,if x=π2(1+cosx)(atanxb),if π2<x<πf(x) = \begin{cases} (\frac{6}{5})^{\frac{tan6x}{tan5x}}, & \text{if } 0 < x < \frac{\pi}{2} \\ b+2, & \text{if } x = \frac{\pi}{2} \\ (1 + |cosx|)^{(\frac{a|tanx|}{b})}, & \text{if } \frac{\pi}{2} < x < \pi \end{cases}

Determine the values of 'a' & 'b', if f is continuous at x = π/2\pi/2.

Answer

a=0 and b=-1

Explanation

Solution

For the function f(x)f(x) to be continuous at x=π/2x = \pi/2, the following condition must hold: limx(π/2)f(x)=limx(π/2)+f(x)=f(π/2)\lim_{x \to (\pi/2)^-} f(x) = \lim_{x \to (\pi/2)^+} f(x) = f(\pi/2)

  1. Evaluate the left-hand limit (LHL): For 0<x<π/20 < x < \pi/2, f(x)=(65)tan6xtan5xf(x) = (\frac{6}{5})^{\frac{tan6x}{tan5x}}. Let x=π2hx = \frac{\pi}{2} - h, where h0+h \to 0^+ as x(π/2)x \to (\pi/2)^-. The exponent becomes: tan(6(π2h))tan(5(π2h))=tan(3π6h)tan(5π25h)=tan(6h)tan(π25h)=tan(6h)cot(5h)\frac{\tan(6(\frac{\pi}{2} - h))}{\tan(5(\frac{\pi}{2} - h))} = \frac{\tan(3\pi - 6h)}{\tan(\frac{5\pi}{2} - 5h)} = \frac{\tan(-6h)}{\tan(\frac{\pi}{2} - 5h)} = \frac{-\tan(6h)}{\cot(5h)} =tan(6h)1/tan(5h)=tan(6h)tan(5h)= \frac{-\tan(6h)}{1/\tan(5h)} = -\tan(6h)\tan(5h) As h0+h \to 0^+, tan(kh)kh\tan(kh) \approx kh. So, the limit of the exponent is: limh0+tan(6h)tan(5h)=limh0+(6h)(5h)=limh0+30h2=0\lim_{h \to 0^+} -\tan(6h)\tan(5h) = \lim_{h \to 0^+} -(6h)(5h) = \lim_{h \to 0^+} -30h^2 = 0 Therefore, the LHL is: limx(π/2)f(x)=(65)0=1\lim_{x \to (\pi/2)^-} f(x) = \left(\frac{6}{5}\right)^0 = 1

  2. Evaluate the right-hand limit (RHL): For π/2<x<π\pi/2 < x < \pi, f(x)=(1+cosx)atanxbf(x) = (1 + |cosx|)^{\frac{a|tanx|}{b}}. Let x=π2+hx = \frac{\pi}{2} + h, where h0+h \to 0^+ as x(π/2)+x \to (\pi/2)^+. For x(π/2,π)x \in (\pi/2, \pi), cosx<0cosx < 0 and tanx<0tanx < 0. So, cosx=cosx=cos(π2+h)=(sin(h))=sin(h)|cosx| = -cosx = -cos(\frac{\pi}{2} + h) = -(-sin(h)) = sin(h). And tanx=tanx=tan(π2+h)=(cot(h))=cot(h)|tanx| = -tanx = -tan(\frac{\pi}{2} + h) = -(-cot(h)) = cot(h). The limit is of the indeterminate form 11^\infty. We use the formula limxc(1+g(x))h(x)=elimxcg(x)h(x)\lim_{x \to c} (1+g(x))^{h(x)} = e^{\lim_{x \to c} g(x)h(x)}. The limit of the exponent product is: limh0+cosxatanxb=limh0+sin(h)acot(h)b\lim_{h \to 0^+} |cosx| \cdot \frac{a|tanx|}{b} = \lim_{h \to 0^+} sin(h) \cdot \frac{a \cdot cot(h)}{b} =ablimh0+sin(h)cos(h)sin(h)=ablimh0+cos(h)=ab1=ab= \frac{a}{b} \lim_{h \to 0^+} sin(h) \cdot \frac{cos(h)}{sin(h)} = \frac{a}{b} \lim_{h \to 0^+} cos(h) = \frac{a}{b} \cdot 1 = \frac{a}{b} Therefore, the RHL is: limx(π/2)+f(x)=ea/b\lim_{x \to (\pi/2)^+} f(x) = e^{a/b}

  3. Evaluate the function value at x=π/2x=\pi/2: f(π/2)=b+2f(\pi/2) = b+2.

  4. Equate the limits and the function value for continuity: 1=ea/b=b+21 = e^{a/b} = b+2 From the first equality, 1=ea/b1 = e^{a/b}: ab=ln(1)=0\frac{a}{b} = \ln(1) = 0 This implies a=0a=0, provided b0b \neq 0.

    Now, substitute ea/b=1e^{a/b} = 1 into the second equality: 1=b+21 = b+2 b=12=1b = 1 - 2 = -1 Since b=10b = -1 \neq 0, our condition for a=0a=0 is satisfied.

    Thus, the values are a=0a=0 and b=1b=-1.