Solveeit Logo

Question

Question: Kp for the reaction $CuSO_4 \cdot 3H_2O_{(s)} + 2H_2O_{(g)} \rightarrow CuSO_4 \cdot 5H_2O_{(s)}$ i...

Kp for the reaction

CuSO43H2O(s)+2H2O(g)CuSO45H2O(s)CuSO_4 \cdot 3H_2O_{(s)} + 2H_2O_{(g)} \rightarrow CuSO_4 \cdot 5H_2O_{(s)} is 1.0×104atm21.0 \times 10^4 atm^{-2} at certain temperature. What lowest relative humidity of air can be achieved using CuSO4.3H2OCuSO_4.3H_2O as drying agent at that temperature? Aqueous tension at the given temperature = 16 torr

A

47.5%

B

23.75%

C

95%

D

50%

Answer

47.5%

Explanation

Solution

The reaction is CuSO43H2O(s)+2H2O(g)CuSO45H2O(s)CuSO_4 \cdot 3H_2O_{(s)} + 2H_2O_{(g)} \rightleftharpoons CuSO_4 \cdot 5H_2O_{(s)}. The equilibrium constant KpK_p for this reaction is given by Kp=1PH2O2K_p = \frac{1}{P_{H_2O}^2}, where PH2OP_{H_2O} is the partial pressure of water vapour at equilibrium. Given Kp=1.0×104atm2K_p = 1.0 \times 10^4 atm^{-2}, we have: 1.0×104=1PH2O21.0 \times 10^4 = \frac{1}{P_{H_2O}^2} PH2O2=11.0×104atm2=1.0×104atm2P_{H_2O}^2 = \frac{1}{1.0 \times 10^4} atm^2 = 1.0 \times 10^{-4} atm^2 PH2O=1.0×104atm=1.0×102atmP_{H_2O} = \sqrt{1.0 \times 10^{-4}} atm = 1.0 \times 10^{-2} atm

Convert this partial pressure to torr: PH2O=1.0×102atm×760torratm=7.6 torrP_{H_2O} = 1.0 \times 10^{-2} atm \times 760 \frac{\text{torr}}{\text{atm}} = 7.6 \text{ torr}

This partial pressure of water vapour (7.6 torr) is the equilibrium pressure that the drying agent (CuSO43H2OCuSO_4 \cdot 3H_2O in equilibrium with CuSO45H2OCuSO_4 \cdot 5H_2O) can maintain in the air. This is the lowest partial pressure of water vapour that can be achieved.

The aqueous tension at the given temperature is the saturated vapour pressure of water, which is 16 torr. Relative humidity (ϕ\phi) is calculated as: ϕ=Partial pressure of water vapourSaturated vapour pressure of water×100%\phi = \frac{\text{Partial pressure of water vapour}}{\text{Saturated vapour pressure of water}} \times 100\% ϕ=PH2OPH2O,saturation×100%\phi = \frac{P_{H_2O}}{P_{H_2O, \text{saturation}}} \times 100\% ϕ=7.6 torr16 torr×100%\phi = \frac{7.6 \text{ torr}}{16 \text{ torr}} \times 100\% ϕ=0.475×100%=47.5%\phi = 0.475 \times 100\% = 47.5\%

Thus, the lowest relative humidity that can be achieved using CuSO43H2OCuSO_4 \cdot 3H_2O as a drying agent is 47.5%.