Question
Question: Solve the equation $k[k-2]+3k(5+k)+1[10+k^2]=\pm56$ for $k$. ...
Solve the equation k[k−2]+3k(5+k)+1[10+k2]=±56 for k.

Answer
The real values of k are 2 and −523.
Explanation
Solution
Expand and simplify the equation: k2−2k+15k+3k2+10+k2=±56 5k2+13k+10=±56
This leads to two separate equations:
Case 1: 5k2+13k+10=56 5k2+13k−46=0 Using the quadratic formula, k=2(5)−13±132−4(5)(−46)=10−13±169+920=10−13±1089=10−13±33 k1=10−13+33=1020=2 k2=10−13−33=10−46=−523
Case 2: 5k2+13k+10=−56 5k2+13k+66=0 The discriminant is Δ=132−4(5)(66)=169−1320=−1151. Since Δ<0, there are no real solutions in this case.
The real solutions are k=2 and k=−523.
