Solveeit Logo

Question

Question: Solve the equation $k[k-2]+3k(5+k)+1[10+k^2]=\pm56$ for $k$. ...

Solve the equation k[k2]+3k(5+k)+1[10+k2]=±56k[k-2]+3k(5+k)+1[10+k^2]=\pm56 for kk.

Answer

The real values of kk are 22 and 235-\frac{23}{5}.

Explanation

Solution

Expand and simplify the equation: k22k+15k+3k2+10+k2=±56k^2 - 2k + 15k + 3k^2 + 10 + k^2 = \pm56 5k2+13k+10=±565k^2 + 13k + 10 = \pm56

This leads to two separate equations:

Case 1: 5k2+13k+10=565k^2 + 13k + 10 = 56 5k2+13k46=05k^2 + 13k - 46 = 0 Using the quadratic formula, k=13±1324(5)(46)2(5)=13±169+92010=13±108910=13±3310k = \frac{-13 \pm \sqrt{13^2 - 4(5)(-46)}}{2(5)} = \frac{-13 \pm \sqrt{169 + 920}}{10} = \frac{-13 \pm \sqrt{1089}}{10} = \frac{-13 \pm 33}{10} k1=13+3310=2010=2k_1 = \frac{-13 + 33}{10} = \frac{20}{10} = 2 k2=133310=4610=235k_2 = \frac{-13 - 33}{10} = \frac{-46}{10} = -\frac{23}{5}

Case 2: 5k2+13k+10=565k^2 + 13k + 10 = -56 5k2+13k+66=05k^2 + 13k + 66 = 0 The discriminant is Δ=1324(5)(66)=1691320=1151\Delta = 13^2 - 4(5)(66) = 169 - 1320 = -1151. Since Δ<0\Delta < 0, there are no real solutions in this case.

The real solutions are k=2k=2 and k=235k=-\frac{23}{5}.