Solveeit Logo

Question

Question: Factorize the expression $k^4 + k^2 + 1$....

Factorize the expression k4+k2+1k^4 + k^2 + 1.

A

(k2k+1)(k2+k+1)(k^2 - k + 1)(k^2 + k + 1)

B

(k2+1)2(k^2 + 1)^2

C

(k21)(k2+1)(k^2 - 1)(k^2 + 1)

D

(k+1)4(k+1)^4

Answer

(k^2 - k + 1)(k^2 + k + 1)

Explanation

Solution

To factorize the expression k4+k2+1k^4 + k^2 + 1, we can use the technique of completing the square.

  1. Add and subtract k2k^2 to the expression: k4+k2+1=k4+2k2+1k2k^4 + k^2 + 1 = k^4 + 2k^2 + 1 - k^2
  2. Group the first three terms, which form a perfect square trinomial: (k4+2k2+1)k2(k^4 + 2k^2 + 1) - k^2
  3. Recognize the perfect square (k2+1)2(k^2 + 1)^2: (k2+1)2k2(k^2 + 1)^2 - k^2
  4. Apply the difference of squares formula, A2B2=(AB)(A+B)A^2 - B^2 = (A - B)(A + B), where A=k2+1A = k^2 + 1 and B=kB = k: ((k2+1)k)((k2+1)+k)((k^2 + 1) - k)((k^2 + 1) + k)
  5. Rearrange the terms within each parenthesis to get the standard form: (k2k+1)(k2+k+1)(k^2 - k + 1)(k^2 + k + 1) The factors k2k+1k^2 - k + 1 and k2+k+1k^2 + k + 1 are irreducible over real numbers as their discriminants are negative.