Solveeit Logo

Question

Question: \( {K_P} \) for the reaction \( MgC{O_3}\left( g \right)\, \to \,MgO\left( g \right) + C{O_2}\left( ...

KP{K_P} for the reaction MgCO3(g)MgO(g)+CO2(g)MgC{O_3}\left( g \right)\, \to \,MgO\left( g \right) + C{O_2}\left( g \right) is 9×10109 \times {10^{ - 10}} . Calculate ΔG\Delta {G^ \circ } for the reaction at 25C{25^ \circ }C .

Explanation

Solution

Hint : KP{K_P} is the equilibrium constant which is used to express the relationship between partial pressure of products and partial pressure of reactants. ΔG\Delta {G^ \circ } is the Gibbs Free Energy of a chemical reaction under standard conditions. Use the formula ΔG=RTlnKP\Delta {G^ \circ }\, = \, - RT\ln {K_P} to calculate the value of ΔG\Delta {G^ \circ } at 25C{25^ \circ }C .

Complete Step By Step Answer:
The equation given in the question is: MgCO3(g)MgO(g)+CO2(g)..........(1)MgC{O_3}\left( g \right)\, \to \,MgO\left( g \right) + C{O_2}\left( g \right)..........\left( 1 \right) .
Now, at equilibrium iνiμi=0\sum\limits_i {{\nu _i}{\mu _i}\, = \,0} , where νi{\nu _i} is the stoichiometric coefficient of component ii with proper sign and μi{\mu _i} is the chemical potential of the component ii .
Applying this to equation (1)\left( 1 \right) , μMgO+μCO2μMgCO3=0........(2){\mu _{MgO}} + {\mu _{C{O_2}}} - {\mu _{MgC{O_3}}}\, = \,0........\left( 2 \right) .
Now we know, μi=μi(T)+RTln(PiPi){\mu _i}\, = \,{\mu _i}^ \circ \left( T \right)\, + \,RT\ln \left( {\dfrac{{{P_i}}}{{{P_i}^ \circ }}} \right) .
Applying this to equation (2)\left( 2 \right) we get,
μMgO+μCO2μMgCO3+RTln(PMgOPMgO)+RTln(PCO2PCO2)RTln(PMgCO3PMgCO3)=0{\mu _{MgO}}^ \circ \, + \,{\mu _{C{O_2}}}^ \circ \, - \,{\mu _{MgC{O_3}}}^ \circ \, + \,RT\ln \left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\, + \,RT\ln \left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)\, - \,RT\ln \left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)\, = \,0
(μMgO+μCO2μMgCO3)=RTln(PMgOPMgO)RTln(PCO2PCO2)+RTln(PMgCO3PMgCO3)\Rightarrow \,\left( {{\mu _{MgO}}^ \circ \, + \,{\mu _{C{O_2}}}^ \circ \, - \,{\mu _{MgC{O_3}}}^ \circ } \right)\, = \, - RT\ln \left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\, - \,RT\ln \left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)\, + \,RT\ln \left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)
\Rightarrow \,\left( {{\mu _{MgO}}^ \circ \, + \,{\mu _{C{O_2}}}^ \circ \, - \,{\mu _{MgC{O_3}}}^ \circ } \right)\, = \, - RT\ln \left\\{ {\dfrac{{\left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)}}} \right\\}............\left( 3 \right)
Now, the left hand side of the above equation is the standard Gibbs free energy change i.e. ΔGP\Delta {G_P}^ \circ of the reaction and is given by ΔGP=μMgO+μCO2μMgCO3\Delta {G_P}^ \circ \, = \,{\mu _{MgO}} + {\mu _{C{O_2}}} - {\mu _{MgC{O_3}}} .
So, the equation (3)\left( 3 \right) becomes,
\Delta {G_P}^ \circ \, = \, - RT\ln \left\\{ {\dfrac{{\left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)}}} \right\\}..........\left( 4 \right) .
Now the thermodynamic equilibrium constant of the reaction, KP({K_P}\,( taking P=1bar{P^ \circ }\, = \,1\,bar as the standard state pressure )) is given by,
KP=(PMgOPMgO)(PCO2PCO2)(PMgCO3PMgCO3){K_P}\, = \,\dfrac{{\left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)}} .
So equation (4)\left( 4 \right) changes to
ΔGP=RTlnKP..........(5)\Delta {G_P}^ \circ \, = \, - RT\ln {K_P}..........\left( 5 \right) .
Now, it is given that the thermodynamic equilibrium constant KP=9×1010{K_P}\, = \,9 \times {10^{ - 10}} .
Therefore, lnKP=ln(9×1010)=20.83\ln {K_P}\, = \,\ln \left( {9 \times {{10}^{ - 10}}} \right)\, = \, - 20.83 .
The temperature given is 25C{25^ \circ }C .
So T=(25+273)K=298KT\, = \,\left( {25 + 273} \right)\,K\, = \,298\,K .
Now the universal gas constant R=8.314Jmol1K1R\, = \,8.314\,J\,mo{l^{ - 1}}\,{K^{ - 1}} .
Putting the values in equation (5)\left( 5 \right) we get,
ΔGP=8.314Jmol1K1×298K×(20.83)\Delta {G_P}^ \circ \, = \, - 8.314\,J\,mo{l^{ - 1}}\,{K^{ - 1}} \times \,298\,K\, \times \,\left( { - 20.83} \right)
ΔGP=51607.8Jmol1\Rightarrow \,\Delta {G_P}^ \circ \, = \,51607.8\,J\,mo{l^{ - 1}}
ΔGP=51.6KJmol1\Rightarrow \,\Delta {G_P}^ \circ \, = \,51.6\,KJ\,mo{l^{ - 1}} .

Additional Information:
Now the thermodynamic equilibrium constant can also be represented in terms of concentration and is given by, KC=(CMgOCMgO)(CCO2CCO2)(CMgCO3CMgCO3){K_C}\, = \,\dfrac{{\left( {\dfrac{{{C_{MgO}}}}{{{C_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{C_{C{O_2}}}}}{{{C_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{C_{MgC{O_3}}}}}{{{C_{MgC{O_3}}}^ \circ }}} \right)}} , where C=1moldm3{C^ \circ }\, = \,1\,mol\,d{m^{ - 3}} . Therefore change in Gibbs Free Energy is given by, ΔGC=RTlnKC\Delta {G_C}^ \circ \, = \, - RT\ln {K_C} . The relation between KP{K_P} and KC{K_C} is: KP=KC(CRTP)Δn{K_P}\, = \,{K_C}{\left( {\dfrac{{{C^ \circ }RT}}{{{P^ \circ }}}} \right)^{\Delta n}} .

Note :
In this question units play an important role so convert all the quantities given to either SI or CGS units. Proceed in a stepwise manner in order to avoid mistakes. Do remember that Kp{K_p} is a dimensionless quantity as it is the ratio of the partial pressures of products to the partial pressure of reactants.