Question
Question: \( {K_P} \) for the reaction \( MgC{O_3}\left( g \right)\, \to \,MgO\left( g \right) + C{O_2}\left( ...
KP for the reaction MgCO3(g)→MgO(g)+CO2(g) is 9×10−10 . Calculate ΔG∘ for the reaction at 25∘C .
Solution
Hint : KP is the equilibrium constant which is used to express the relationship between partial pressure of products and partial pressure of reactants. ΔG∘ is the Gibbs Free Energy of a chemical reaction under standard conditions. Use the formula ΔG∘=−RTlnKP to calculate the value of ΔG∘ at 25∘C .
Complete Step By Step Answer:
The equation given in the question is: MgCO3(g)→MgO(g)+CO2(g)..........(1) .
Now, at equilibrium i∑νiμi=0 , where νi is the stoichiometric coefficient of component i with proper sign and μi is the chemical potential of the component i .
Applying this to equation (1) , μMgO+μCO2−μMgCO3=0........(2) .
Now we know, μi=μi∘(T)+RTln(Pi∘Pi) .
Applying this to equation (2) we get,
μMgO∘+μCO2∘−μMgCO3∘+RTln(PMgO∘PMgO)+RTln(PCO2∘PCO2)−RTln(PMgCO3∘PMgCO3)=0
⇒(μMgO∘+μCO2∘−μMgCO3∘)=−RTln(PMgO∘PMgO)−RTln(PCO2∘PCO2)+RTln(PMgCO3∘PMgCO3)
\Rightarrow \,\left( {{\mu _{MgO}}^ \circ \, + \,{\mu _{C{O_2}}}^ \circ \, - \,{\mu _{MgC{O_3}}}^ \circ } \right)\, = \, - RT\ln \left\\{ {\dfrac{{\left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)}}} \right\\}............\left( 3 \right)
Now, the left hand side of the above equation is the standard Gibbs free energy change i.e. ΔGP∘ of the reaction and is given by ΔGP∘=μMgO+μCO2−μMgCO3 .
So, the equation (3) becomes,
\Delta {G_P}^ \circ \, = \, - RT\ln \left\\{ {\dfrac{{\left( {\dfrac{{{P_{MgO}}}}{{{P_{MgO}}^ \circ }}} \right)\left( {\dfrac{{{P_{C{O_2}}}}}{{{P_{C{O_2}}}^ \circ }}} \right)}}{{\left( {\dfrac{{{P_{MgC{O_3}}}}}{{{P_{MgC{O_3}}}^ \circ }}} \right)}}} \right\\}..........\left( 4 \right) .
Now the thermodynamic equilibrium constant of the reaction, KP( taking P∘=1bar as the standard state pressure ) is given by,
KP=(PMgCO3∘PMgCO3)(PMgO∘PMgO)(PCO2∘PCO2) .
So equation (4) changes to
ΔGP∘=−RTlnKP..........(5) .
Now, it is given that the thermodynamic equilibrium constant KP=9×10−10 .
Therefore, lnKP=ln(9×10−10)=−20.83 .
The temperature given is 25∘C .
So T=(25+273)K=298K .
Now the universal gas constant R=8.314Jmol−1K−1 .
Putting the values in equation (5) we get,
ΔGP∘=−8.314Jmol−1K−1×298K×(−20.83)
⇒ΔGP∘=51607.8Jmol−1
⇒ΔGP∘=51.6KJmol−1 .
Additional Information:
Now the thermodynamic equilibrium constant can also be represented in terms of concentration and is given by, KC=(CMgCO3∘CMgCO3)(CMgO∘CMgO)(CCO2∘CCO2) , where C∘=1moldm−3 . Therefore change in Gibbs Free Energy is given by, ΔGC∘=−RTlnKC . The relation between KP and KC is: KP=KC(P∘C∘RT)Δn .
Note :
In this question units play an important role so convert all the quantities given to either SI or CGS units. Proceed in a stepwise manner in order to avoid mistakes. Do remember that Kp is a dimensionless quantity as it is the ratio of the partial pressures of products to the partial pressure of reactants.