Question
Question: \({{K}_{p}}\) for a reaction at \(25{}^\circ C\) is 10 atm. The activation energy for forward and re...
Kp for a reaction at 25∘C is 10 atm. The activation energy for forward and reverse reactions are 12 and 20 kJ/mol respectively. The Kcfor the reaction at 40∘Cwill be
(A) 4.33×10−1M
(B) 3.33×10−2M
(C) 3.33×10−1M
(D) 4.33×10−2M
Solution
To attempt this question, first calculate the Kc value at25∘C, and then calculate Kcfor the reaction at 40∘C. Use the Van't Hoff equation for the same.
Complete step by step solution:
Given,
Activation energy for forward reaction (Ef)=12kJ/mol
Activation energy for backward reaction (Eb)=20kJ/mol
Kpat 25∘C = 10 atm and Δn=1.
Therefore, now calculate the value of Kc.
Kp=Kc(RT)Δn=Kc(RT)
⇒Kc=RTKp=0.0821×29810=0.4M
(Temperature values are placed after converting into kelvin, 25∘C+273=298K )
For calculating Kc for the reaction use the vant’s Hoff equation:
log(Kc)1(Kc)2=2.303RΔH(T2T1T2−T1)
Now, to calculate the value of ΔH we need the value of activation energy of forward and backward reaction.
ΔH=Ef−Eb=12−20=−8kJ/mol=−8000J/mol
log(Kc)298K(Kc)313K=2.303×8.314−8000(313×298313−298)
\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)$$$$$$
\log \dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22}\log \dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =-0.0667Takingantilogbothsides,weget\dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =1{{0}^{-0.0667}}{{({{K}{c}})}{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M$$
So, the answer is option ©.
Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that theKp value is given in atmosphere so to calculate Kc use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 L⋅atm/K⋅molnot 8.314J/K⋅mol.
Also, while calculating theKc value at 313 K, either convert ΔH in Joules per mole or change gas constant (R) in kJ/K⋅mol