Solveeit Logo

Question

Question: \({{K}_{p}}\) for a reaction at \(25{}^\circ C\) is 10 atm. The activation energy for forward and re...

Kp{{K}_{p}} for a reaction at 25C25{}^\circ C is 10 atm. The activation energy for forward and reverse reactions are 12 and 20 kJ/mol respectively. The Kc{{K}_{c}}for the reaction at 40C40{}^\circ Cwill be
(A) 4.33×101M4.33\times {{10}^{-1}}M
(B) 3.33×102M3.33\times {{10}^{-2}}M
(C) 3.33×101M3.33\times {{10}^{-1}}M
(D) 4.33×102M4.33\times {{10}^{-2}}M

Explanation

Solution

To attempt this question, first calculate the Kc{{K}_{c}} value at25C25{}^\circ C, and then calculate Kc{{K}_{c}}for the reaction at 40C40{}^\circ C. Use the Van't Hoff equation for the same.

Complete step by step solution:
Given,
Activation energy for forward reaction (Ef)=12kJ/mol\left( {{E}_{f}} \right)=12kJ/mol
Activation energy for backward reaction (Eb)=20kJ/mol\left( {{E}_{b}} \right)=20kJ/mol
Kp{{K}_{p}}at 25C25{}^\circ C = 10 atm and Δn=1\Delta n=1.
Therefore, now calculate the value of Kc{{K}_{c}}.
Kp=Kc(RT)Δn=Kc(RT){{K}_{p}}={{K}_{c}}{{\left( RT \right)}^{\Delta n}}={{K}_{c}}\left( RT \right)
Kc=KpRT=100.0821×298=0.4M\Rightarrow {{K}_{c}}=\dfrac{{{K}_{p}}}{RT}=\dfrac{10}{0.0821\times 298}=0.4M
(Temperature values are placed after converting into kelvin, 25C+273=298K25{}^\circ C+273=298K )
For calculating Kc{{K}_{c}} for the reaction use the vant’s Hoff equation:
log(Kc)2(Kc)1=ΔH2.303R(T2T1T2T1)\log \dfrac{{{({{K}_{c}})}_{2}}}{{{({{K}_{c}})}_{1}}} =\dfrac{\Delta H}{2.303R}\left( \dfrac{{{T}_{2}}-{{T}_{1}}}{{{T}_{2}}{{T}_{1}}} \right)
Now, to calculate the value of ΔH\Delta H we need the value of activation energy of forward and backward reaction.
ΔH=EfEb=1220=8kJ/mol=8000J/mol\Delta H={{E}_{f}}-{{E}_{b}}=12-20=-8kJ/mol=-8000J/mol
log(Kc)313K(Kc)298K=80002.303×8.314(313298313×298)\log \dfrac{{{({{K}_{c}})}_{313K}}}{{{({{K}_{c}})}_{298K}}} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{313-298}{313\times 298} \right)
\log \dfrac{{{({{K}_{c}})}_{313K}}}{(0.4)} =\dfrac{-8000}{2.303\times 8.314}\left( \dfrac{15}{93870} \right)$$$$$$ \log \dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =\dfrac{-120000}{1797342.22} \log \dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =-0.0667Takingantilogbothsides,weget Taking antilog both sides, we get \dfrac{{{({{K}{c}})}{313K}}}{(0.4)} =1{{0}^{-0.0667}} {{({{K}{c}})}{313K}} =0.4\times 0.8576=0.3430M=3.430\times 1{{0}^{-1}}M$$

So, the answer is option ©.

Note: While solving the question, remember to convert temperature from degree Celsius into Kelvin. Also, notice that theKp{{K}_{p}} value is given in atmosphere so to calculate Kc{{K}_{c}} use the value of universal gas constant (R) in atm not in Joules, i.e. 0.082 Latm/KmolL\cdot atm/K\cdot molnot 8.314J/KmolJ/K\cdot mol.
Also, while calculating theKc{{K}_{c}} value at 313 K, either convert ΔH\Delta H in Joules per mole or change gas constant (R) in kJ/KmolkJ/K\cdot mol