Solveeit Logo

Question

Question: K is the force constant of a spring. The work done in increasing its extension from \(l _ { 1 }\) to...

K is the force constant of a spring. The work done in increasing its extension from l1l _ { 1 } to l2l _ { 2 } will be

A

K(l2l1)K \left( l _ { 2 } - l _ { 1 } \right)

B

K2(l2+l1)\frac { K } { 2 } \left( l _ { 2 } + l _ { 1 } \right)

C

K(l22l12)K \left( l _ { 2 } ^ { 2 } - l _ { 1 } ^ { 2 } \right)

D

K2(l22l12)\frac { K } { 2 } \left( l _ { 2 } ^ { 2 } - l _ { 1 } ^ { 2 } \right)

Answer

K2(l22l12)\frac { K } { 2 } \left( l _ { 2 } ^ { 2 } - l _ { 1 } ^ { 2 } \right)

Explanation

Solution

At extension l1l _ { 1 }, the stored energy =12Kl12= \frac { 1 } { 2 } K l _ { 1 } ^ { 2 }

At extension l2l _ { 2 }, the stored energy=12Kl22= \frac { 1 } { 2 } K l _ { 2 } ^ { 2 }

Work done in increasing its extension from l1l _ { 1 } to l2l _ { 2 }

=12K(l22l12)= \frac { 1 } { 2 } K \left( l _ { 2 } ^ { 2 } - l _ { 1 } ^ { 2 } \right)