Solveeit Logo

Question

Question: Jump of discontinuity of f(x) = $\frac{(e^{tan x} - 1)}{(e^{tan x} + 1)}$ at x = $\frac{\pi}{2}$ is...

Jump of discontinuity of f(x) = (etanx1)(etanx+1)\frac{(e^{tan x} - 1)}{(e^{tan x} + 1)} at x = π2\frac{\pi}{2} is

Answer

2

Explanation

Solution

Let the given function be f(x)=(etanx1)(etanx+1)f(x) = \frac{(e^{\tan x} - 1)}{(e^{\tan x} + 1)}. We need to find the jump of discontinuity at x=π2x = \frac{\pi}{2}.

The jump of discontinuity at a point x=ax=a is defined as the absolute difference between the right-hand limit and the left-hand limit at that point, i.e., limxa+f(x)limxaf(x)|\lim_{x \to a^+} f(x) - \lim_{x \to a^-} f(x)|.

First, we calculate the left-hand limit at x=π2x = \frac{\pi}{2}: LHL=limx(π/2)f(x)=limx(π/2)etanx1etanx+1LHL = \lim_{x \to (\pi/2)^-} f(x) = \lim_{x \to (\pi/2)^-} \frac{e^{\tan x} - 1}{e^{\tan x} + 1}

As x(π2)x \to (\frac{\pi}{2})^-, tanx+\tan x \to +\infty.

Let y=tanxy = \tan x. As x(π2)x \to (\frac{\pi}{2})^-, y+y \to +\infty.

LHL=limy+ey1ey+1LHL = \lim_{y \to +\infty} \frac{e^y - 1}{e^y + 1}

To evaluate this limit, divide the numerator and the denominator by eye^y: LHL=limy+1ey1+eyLHL = \lim_{y \to +\infty} \frac{1 - e^{-y}}{1 + e^{-y}}

As y+y \to +\infty, ey0e^{-y} \to 0.

LHL=101+0=1LHL = \frac{1 - 0}{1 + 0} = 1.

Next, we calculate the right-hand limit at x=π2x = \frac{\pi}{2}: RHL=limx(π/2)+f(x)=limx(π/2)+etanx1etanx+1RHL = \lim_{x \to (\pi/2)^+} f(x) = \lim_{x \to (\pi/2)^+} \frac{e^{\tan x} - 1}{e^{\tan x} + 1}

As x(π2)+x \to (\frac{\pi}{2})^+, tanx\tan x \to -\infty.

Let y=tanxy = \tan x. As x(π2)+x \to (\frac{\pi}{2})^+, yy \to -\infty.

RHL=limyey1ey+1RHL = \lim_{y \to -\infty} \frac{e^y - 1}{e^y + 1}

As yy \to -\infty, ey0e^y \to 0.

RHL=010+1=1RHL = \frac{0 - 1}{0 + 1} = -1.

Since the left-hand limit (11) and the right-hand limit (1-1) exist but are not equal, the function has a jump discontinuity at x=π2x = \frac{\pi}{2}.

The jump of discontinuity is the absolute difference between the right-hand limit and the left-hand limit: Jump =RHLLHL=11=2=2= |RHL - LHL| = |-1 - 1| = |-2| = 2.