Solveeit Logo

Question

Mathematics Question on Straight lines

Joint equation of pair of lines through (3,2)(3, - 2) and parallel to x24xy+3y2=0x^2 - 4xy + 3y^2 = 0 is

A

x2+3y24xy14x+24y+45=0x^2 + 3y^2 - 4xy - 14x + 24y + 45 = 0

B

x2+3y2+4xy14x+24y+45=0x^2 + 3y^2 + 4xy- 14x + 24y + 45 = 0

C

x2+3y2+4xy14x+24y45=0x^2 + 3y^2 + 4 xy- 14x + 24y - 45= 0

D

x2+3y2+4xy14x24y45=0x^2 + 3y^2 + 4xy - 14x - 24y - 45 = 0

Answer

x2+3y24xy14x+24y+45=0x^2 + 3y^2 - 4xy - 14x + 24y + 45 = 0

Explanation

Solution

Given equation of line is x24xy+3y2=0x^{2}-4 x y+3 y^{2}=0 m1+m2=43\therefore m_{1}+m_{2}=\frac{4}{3} and m1m2=13m_{1} m_{2}=\frac{1}{3} On solving these equations, we get m1=1,m2=13m_{1}=1, m_{2}=\frac{1}{3} Let the lines parallel to given line are y=m1x+c1y=m_{1} x+c_{1} and y=m2x+c2y=m_{2} x+c_{2} y=13x+c1 \therefore \,\,\,y=\frac{1}{3} x+c_{1} and y=x+c2y=x+c_{2} Also, these lines passes through the point (32)(3-2) 2=13×3+c1\therefore \,\,\,-2=\frac{1}{3} \times 3+c_{1} c1=3\Rightarrow \,\,\,c_{1}=-3 and 2=1×3+c2\,\,\,-2=1 \times 3+c_{2} c2=5\Rightarrow \,\,\,c_{2}=-5 \therefore Required equation of pair of lines is (3yx+9)(yx+5)=0(3 y-x+9)(y-x+5)=0 x2+3y24xy14x+24y+45=0\Rightarrow \,\, x^{2}+3 y^{2}-4 x y-14 x+24 y+45=0