Solveeit Logo

Question

Question: If $\cos^{-1}(\frac{2}{3x})+\cos^{-1}(\frac{3}{4x})=\frac{\pi}{2}(x>\frac{3}{4})$ then x is equal to...

If cos1(23x)+cos1(34x)=π2(x>34)\cos^{-1}(\frac{2}{3x})+\cos^{-1}(\frac{3}{4x})=\frac{\pi}{2}(x>\frac{3}{4}) then x is equal to :

A

14512\frac{\sqrt{145}}{12}

B

14510\frac{\sqrt{145}}{10}

C

14612\frac{\sqrt{146}}{12}

D

14511\frac{\sqrt{145}}{11}

Answer

14512\frac{\sqrt{145}}{12}

Explanation

Solution

The given equation is cos1(23x)+cos1(34x)=π2\cos^{-1}(\frac{2}{3x})+\cos^{-1}(\frac{3}{4x})=\frac{\pi}{2}. We are given that x>34x > \frac{3}{4}.

For the terms cos1(23x)\cos^{-1}(\frac{2}{3x}) and cos1(34x)\cos^{-1}(\frac{3}{4x}) to be defined, their arguments must be in the interval [1,1][-1, 1].

We can use the property of inverse trigonometric functions: cos1A+cos1B=π2\cos^{-1} A + \cos^{-1} B = \frac{\pi}{2} if and only if A2+B2=1A^2 + B^2 = 1, provided A0A \ge 0, B0B \ge 0.

Here, A=23xA = \frac{2}{3x} and B=34xB = \frac{3}{4x}. Since x>34x > \frac{3}{4}, both AA and BB are positive. The condition A2+B2=1A^2+B^2=1 must hold for the sum to be π2\frac{\pi}{2}.

(23x)2+(34x)2=1(\frac{2}{3x})^2 + (\frac{3}{4x})^2 = 1

49x2+916x2=1\frac{4}{9x^2} + \frac{9}{16x^2} = 1

To combine the terms on the left side, find a common denominator, which is 144x2144x^2:

4×169×16x2+9×916×9x2=1\frac{4 \times 16}{9 \times 16 x^2} + \frac{9 \times 9}{16 \times 9 x^2} = 1

64144x2+81144x2=1\frac{64}{144x^2} + \frac{81}{144x^2} = 1

64+81144x2=1\frac{64 + 81}{144x^2} = 1

145144x2=1\frac{145}{144x^2} = 1

145=144x2145 = 144x^2

x2=145144x^2 = \frac{145}{144}

Taking the square root of both sides:

x=±145144=±14512x = \pm \sqrt{\frac{145}{144}} = \pm \frac{\sqrt{145}}{12}.

We are given the condition x>34x > \frac{3}{4}. We need to check which of the two possible values of xx satisfies this condition. The positive value is x=14512x = \frac{\sqrt{145}}{12}.

To check if 14512>34\frac{\sqrt{145}}{12} > \frac{3}{4}, we can compare their squares:

(14512)2=145144(\frac{\sqrt{145}}{12})^2 = \frac{145}{144}

(34)2=916=9×916×9=81144(\frac{3}{4})^2 = \frac{9}{16} = \frac{9 \times 9}{16 \times 9} = \frac{81}{144}.

Since 145144>81144\frac{145}{144} > \frac{81}{144}, we have (14512)2>(34)2(\frac{\sqrt{145}}{12})^2 > (\frac{3}{4})^2.

Since both 14512\frac{\sqrt{145}}{12} and 34\frac{3}{4} are positive, taking the square root preserves the inequality:

14512>34\frac{\sqrt{145}}{12} > \frac{3}{4}.

So, the value x=14512x = \frac{\sqrt{145}}{12} satisfies the given condition. The negative value x=14512x = -\frac{\sqrt{145}}{12} is clearly not greater than 34\frac{3}{4}.

Thus, the only valid solution is x=14512x = \frac{\sqrt{145}}{12}.