Solveeit Logo

Question

Question: If f(x) = $2tan^{-1}x + sin^{-1}(\frac{2x}{1 + x^2})$, x > 1, then f(5) is equal to...

If f(x) = 2tan1x+sin1(2x1+x2)2tan^{-1}x + sin^{-1}(\frac{2x}{1 + x^2}), x > 1, then f(5) is equal to

A

π/2\pi/2

B

π\pi

C

4tan1(5)4tan^{-1}(5)

D

tan1(65156)tan^{-1}(\frac{65}{156})

Answer

π\pi

Explanation

Solution

The given function is f(x)=2tan1x+sin1(2x1+x2)f(x) = 2tan^{-1}x + sin^{-1}(\frac{2x}{1 + x^2}) for x>1x > 1.

We use the identity for sin1(2x1+x2)sin^{-1}(\frac{2x}{1 + x^2}) in terms of tan1xtan^{-1}x. The general identity is:

sin1(2x1+x2)={2tan1xif x1π2tan1xif x>1π2tan1xif x<1sin^{-1}(\frac{2x}{1 + x^2}) = \begin{cases} 2tan^{-1}x & \text{if } |x| \le 1 \\ \pi - 2tan^{-1}x & \text{if } x > 1 \\ -\pi - 2tan^{-1}x & \text{if } x < -1 \end{cases}

Given that x>1x > 1, we use the second case of the identity: sin1(2x1+x2)=π2tan1xsin^{-1}(\frac{2x}{1 + x^2}) = \pi - 2tan^{-1}x for x>1x > 1.

Substitute this into the expression for f(x)f(x):

f(x)=2tan1x+sin1(2x1+x2)f(x) = 2tan^{-1}x + sin^{-1}(\frac{2x}{1 + x^2})

For x>1x > 1, this becomes:

f(x)=2tan1x+(π2tan1x)f(x) = 2tan^{-1}x + (\pi - 2tan^{-1}x)

f(x)=2tan1x+π2tan1xf(x) = 2tan^{-1}x + \pi - 2tan^{-1}x

f(x)=πf(x) = \pi

So, for all x>1x > 1, the function f(x)f(x) has a constant value of π\pi.

We need to find f(5)f(5). Since 5>15 > 1, the value of f(5)f(5) is π\pi. Therefore, f(5)=πf(5) = \pi.