Question
Question: Prove the identity; $\log_a N. \log_b N + \log_b N. \log_c N + \log_c N. \log_a N = \frac{\log_a N. ...
Prove the identity; logaN.logbN+logbN.logcN+logcN.logaN=logabcNlogaN.logbN.logcN

Answer
The identity is proved by using the change of base formula for logarithms and algebraic manipulation of the terms.
Explanation
Solution
Let X=logNa, Y=logNb, Z=logNc. Then logaN=1/X, logbN=1/Y, logcN=1/Z. LHS = XY1+YZ1+ZX1=XYZX+Y+Z. RHS = logabcN(1/X)(1/Y)(1/Z)=1/(logNa+logNb+logNc)1/(XYZ)=1/(X+Y+Z)1/(XYZ)=XYZX+Y+Z. Thus, LHS = RHS.