Solveeit Logo

Question

Question: If a,b,c are positive real number, prove that : (i) $a^{\log b-\log c} b^{\log c-\log a} c^{\log a-\...

If a,b,c are positive real number, prove that : (i) alogblogcblogclogaclogalogb=1a^{\log b-\log c} b^{\log c-\log a} c^{\log a-\log b} = 1

Answer

The identity alogblogcblogclogaclogalogb=1a^{\log b-\log c} b^{\log c-\log a} c^{\log a-\log b} = 1 is proven to be true for all positive real numbers a,b,ca, b, c.

Explanation

Solution

Let EE be the expression. Taking logkE\log_k E and applying logarithm properties log(x/y)=logxlogy\log(x/y) = \log x - \log y and logxp=plogx\log x^p = p \log x, we get: logkE=(logkblogkc)logka+(logkclogka)logkb+(logkalogkb)logkc\log_k E = (\log_k b - \log_k c) \log_k a + (\log_k c - \log_k a) \log_k b + (\log_k a - \log_k b) \log_k c. Substituting x=logkax = \log_k a, y=logkby = \log_k b, z=logkcz = \log_k c, we have logkE=(yz)x+(zx)y+(xy)z\log_k E = (y-z)x + (z-x)y + (x-y)z. Expanding and simplifying, logkE=xyxz+yzyx+zxzy=0\log_k E = xy - xz + yz - yx + zx - zy = 0. Therefore, E=k0=1E = k^0 = 1.