Solveeit Logo

Question

Question: The equation of the line through the point (0, 1, 2) and perpendicular to the line $\frac{x-1}{2}=\f...

The equation of the line through the point (0, 1, 2) and perpendicular to the line x12=y+13=z12\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{-2} is:

A

x3=y14=z23\frac{x}{-3}=\frac{y-1}{4}=\frac{z-2}{3}

B

x3=y14=z23\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{3}

C

x3=y14=z23\frac{x}{3}=\frac{y-1}{-4}=\frac{z-2}{3}

D

x3=y14=z23\frac{x}{3}=\frac{y-1}{4}=\frac{z-2}{-3}

Answer

x3=y14=z23\frac{x}{-3}=\frac{y-1}{4}=\frac{z-2}{3}

Explanation

Solution

The given line has direction ratios v1=2,3,2\vec{v_1} = \langle 2, 3, -2 \rangle. The required line passes through P(0,1,2)P(0, 1, 2) and has direction ratios v2=a,b,c\vec{v_2} = \langle a, b, c \rangle. For perpendicularity, their dot product must be zero: v1v2=02a+3b2c=0\vec{v_1} \cdot \vec{v_2} = 0 \Rightarrow 2a + 3b - 2c = 0. For option A, a,b,c=3,4,3\langle a, b, c \rangle = \langle -3, 4, 3 \rangle. 2(3)+3(4)2(3)=6+126=02(-3) + 3(4) - 2(3) = -6 + 12 - 6 = 0. This option satisfies the condition.