Solveeit Logo

Question

Question: 3.0 molal NaOH solution has a density of 1.11 g/ml. The molarity of the solution is...

3.0 molal NaOH solution has a density of 1.11 g/ml. The molarity of the solution is

A

2.97

B

3.05

C

3.64

D

3.050

Answer

2.97

Explanation

Solution

Let's solve the problem using the definitions of molality and molarity.

Molality (m) is defined as the number of moles of solute per kilogram of solvent. Given molality = 3.0 molal. This means there are 3.0 moles of NaOH solute in 1 kg (1000 g) of solvent.

The solute is NaOH. The molar mass of NaOH (MoM_o) is the sum of the atomic masses of Na, O, and H. Mo(NaOH)=Atomic mass of Na+Atomic mass of O+Atomic mass of HM_o(\text{NaOH}) = \text{Atomic mass of Na} + \text{Atomic mass of O} + \text{Atomic mass of H} Mo(NaOH)=23.0 g/mol+16.0 g/mol+1.0 g/mol=40.0 g/molM_o(\text{NaOH}) = 23.0 \text{ g/mol} + 16.0 \text{ g/mol} + 1.0 \text{ g/mol} = 40.0 \text{ g/mol}.

Mass of solute = number of moles of solute ×\times molar mass of solute Mass of NaOH = 3.0 mol ×\times 40.0 g/mol = 120 g.

Mass of solvent = 1000 g (from the definition of 3.0 molal solution).

Mass of solution = Mass of solute + Mass of solvent Mass of solution = 120 g + 1000 g = 1120 g.

Density of the solution is given as 1.11 g/ml. Density (d) = Mass of solutionVolume of solution\frac{\text{Mass of solution}}{\text{Volume of solution}}. Volume of solution = Mass of solutionDensity\frac{\text{Mass of solution}}{\text{Density}} Volume of solution = 1120 g1.11 g/ml=11201.11 ml\frac{1120 \text{ g}}{1.11 \text{ g/ml}} = \frac{1120}{1.11} \text{ ml}.

Molarity (M) is defined as the number of moles of solute per liter of solution. Number of moles of solute = 3.0 mol. Volume of solution in liters = Volume in ml1000\frac{\text{Volume in ml}}{1000} Volume of solution in liters = 1120/1.111000 L=11201.11×1000 L=11201110 L\frac{1120/1.11}{1000} \text{ L} = \frac{1120}{1.11 \times 1000} \text{ L} = \frac{1120}{1110} \text{ L}.

Molarity (M) = Number of moles of soluteVolume of solution in liters\frac{\text{Number of moles of solute}}{\text{Volume of solution in liters}} M = 3.0 mol11201110 L=3.0×11101120 mol/L\frac{3.0 \text{ mol}}{\frac{1120}{1110} \text{ L}} = \frac{3.0 \times 1110}{1120} \text{ mol/L}. M = 3×111112 mol/L=333112 mol/L\frac{3 \times 111}{112} \text{ mol/L} = \frac{333}{112} \text{ mol/L}.

Now, we calculate the numerical value: 3331122.973214...\frac{333}{112} \approx 2.973214...

Comparing this value with the given options, the calculated value 2.9732 is closest to 2.97.

Alternatively, we can use the formula relating molarity (M), molality (m), density (d), and molar mass of solute (MoM_o): M=1000×m×d1000+m×MoM = \frac{1000 \times m \times d}{1000 + m \times M_o} Given: m = 3.0 mol/kg, d = 1.11 g/ml, MoM_o = 40.0 g/mol. M=1000×3.0×1.111000+3.0×40.0M = \frac{1000 \times 3.0 \times 1.11}{1000 + 3.0 \times 40.0} M=33301000+120.0M = \frac{3330}{1000 + 120.0} M=33301120.0M = \frac{3330}{1120.0} M=33301120=3331122.9732...M = \frac{3330}{1120} = \frac{333}{112} \approx 2.9732...

Rounding to two decimal places, the molarity is 2.97 M.