Solveeit Logo

Question

Question: 2 NOBr (g) $\rightleftharpoons$ 2 NO (g) + Br₂(g). If nitrosyl bromide (NOBr) is (100/3)% dissociate...

2 NOBr (g) \rightleftharpoons 2 NO (g) + Br₂(g). If nitrosyl bromide (NOBr) is (100/3)% dissociated at 25° C and a total pressure of 0.28 atm. Calculate Kₚ for the dissociation at this temperature.

A

(100/3)% dissociated means α=1/3\alpha = 1/3. Initial pressure: PNOBr=P0P_{NOBr} = P_0 Equilibrium pressures: PNOBr=P0(1α)P_{NOBr} = P_0(1 - \alpha) PNO=P0αP_{NO} = P_0\alpha PBr2=P0α/2P_{Br_2} = P_0\alpha/2 Total pressure Ptotal=PNOBr+PNO+PBr2=P0(1α+α+α/2)=P0(1+α/2)P_{total} = P_{NOBr} + P_{NO} + P_{Br_2} = P_0(1 - \alpha + \alpha + \alpha/2) = P_0(1 + \alpha/2) Given Ptotal=0.28P_{total} = 0.28 atm and α=1/3\alpha = 1/3. 0.28=P0(1+(1/3)/2)=P0(1+1/6)=P0(7/6)0.28 = P_0(1 + (1/3)/2) = P_0(1 + 1/6) = P_0(7/6) P0=0.28×(6/7)=0.04×6=0.24P_0 = 0.28 \times (6/7) = 0.04 \times 6 = 0.24 atm. Equilibrium partial pressures: PNOBr=0.24(11/3)=0.24(2/3)=0.16P_{NOBr} = 0.24(1 - 1/3) = 0.24(2/3) = 0.16 atm PNO=0.24(1/3)=0.08P_{NO} = 0.24(1/3) = 0.08 atm PBr2=0.24(1/3)/2=0.24(1/6)=0.04P_{Br_2} = 0.24(1/3)/2 = 0.24(1/6) = 0.04 atm Kp=(PNO)2×PBr2(PNOBr)2=(0.08)2×0.04(0.16)2=0.0064×0.040.0256=0.0002560.0256=0.01K_p = \frac{(P_{NO})^2 \times P_{Br_2}}{(P_{NOBr})^2} = \frac{(0.08)^2 \times 0.04}{(0.16)^2} = \frac{0.0064 \times 0.04}{0.0256} = \frac{0.000256}{0.0256} = 0.01 atm

B

0.02 atm

C

0.005 atm

D

0.015 atm

Answer

0.01 atm

Explanation

Solution

The reaction is 2NOBr(g)2NO(g)+Br2(g)2 NOBr (g) \rightleftharpoons 2 NO (g) + Br_2(g). Let the initial pressure of NOBr be P0P_0. Given the degree of dissociation α=(100/3)%=1/3\alpha = (100/3)\% = 1/3.

At equilibrium, the partial pressures are: PNOBr=P0(1α)P_{NOBr} = P_0(1-\alpha) PNO=P0αP_{NO} = P_0\alpha PBr2=P0α/2P_{Br_2} = P_0\alpha/2

The total pressure is Ptotal=PNOBr+PNO+PBr2=P0(1α)+P0α+P0α/2=P0(1+α/2)P_{total} = P_{NOBr} + P_{NO} + P_{Br_2} = P_0(1-\alpha) + P_0\alpha + P_0\alpha/2 = P_0(1 + \alpha/2).

Given Ptotal=0.28P_{total} = 0.28 atm and α=1/3\alpha = 1/3: 0.28=P0(1+(1/3)/2)0.28 = P_0(1 + (1/3)/2) 0.28=P0(1+1/6)0.28 = P_0(1 + 1/6) 0.28=P0(7/6)0.28 = P_0(7/6) P0=0.28×(6/7)=0.04×6=0.24P_0 = 0.28 \times (6/7) = 0.04 \times 6 = 0.24 atm.

Now, calculate the equilibrium partial pressures: PNOBr=0.24(11/3)=0.24(2/3)=0.16P_{NOBr} = 0.24(1 - 1/3) = 0.24(2/3) = 0.16 atm PNO=0.24(1/3)=0.08P_{NO} = 0.24(1/3) = 0.08 atm PBr2=0.24(1/3)/2=0.24(1/6)=0.04P_{Br_2} = 0.24(1/3)/2 = 0.24(1/6) = 0.04 atm

The equilibrium constant KpK_p is calculated as: Kp=(PNO)2×PBr2(PNOBr)2K_p = \frac{(P_{NO})^2 \times P_{Br_2}}{(P_{NOBr})^2} Kp=(0.08)2×0.04(0.16)2K_p = \frac{(0.08)^2 \times 0.04}{(0.16)^2} Kp=0.0064×0.040.0256K_p = \frac{0.0064 \times 0.04}{0.0256} Kp=0.0002560.0256=0.01K_p = \frac{0.000256}{0.0256} = 0.01 atm