Question
Question: $\int cos(ln x)dx$...
∫cos(lnx)dx

2x(cos(lnx)+sin(lnx))+C
Solution
To evaluate the integral ∫cos(lnx)dx, we can use the method of integration by parts.
Let I=∫cos(lnx)dx.
We can write the integral as ∫1⋅cos(lnx)dx. Using integration by parts formula ∫udv=uv−∫vdu: Let u=cos(lnx) and dv=1dx. Then, we find du and v: du=dxd(cos(lnx))dx=−sin(lnx)⋅x1dx v=∫1dx=x
Substitute these into the integration by parts formula: I=xcos(lnx)−∫x(−sin(lnx)⋅x1)dx I=xcos(lnx)−∫(−sin(lnx))dx I=xcos(lnx)+∫sin(lnx)dx (Equation 1)
Now, we need to evaluate the integral ∫sin(lnx)dx. Let's call this J. Again, use integration by parts for J=∫1⋅sin(lnx)dx: Let u′=sin(lnx) and dv′=1dx. Then, we find du′ and v′: du′=dxd(sin(lnx))dx=cos(lnx)⋅x1dx v′=∫1dx=x
Substitute these into the integration by parts formula for J: J=xsin(lnx)−∫x(cos(lnx)⋅x1)dx J=xsin(lnx)−∫cos(lnx)dx
Notice that ∫cos(lnx)dx is our original integral I. So, J=xsin(lnx)−I. (Equation 2)
Now, substitute Equation 2 back into Equation 1: I=xcos(lnx)+(xsin(lnx)−I) I=xcos(lnx)+xsin(lnx)−I
Add I to both sides of the equation: 2I=xcos(lnx)+xsin(lnx) 2I=x(cos(lnx)+sin(lnx))
Finally, solve for I: I=2x(cos(lnx)+sin(lnx))+C where C is the constant of integration.
The integral ∫cos(lnx)dx is solved using integration by parts twice.
-
First, apply integration by parts to I=∫1⋅cos(lnx)dx, which leads to I=xcos(lnx)+∫sin(lnx)dx.
-
Then, apply integration by parts again to the new integral J=∫1⋅sin(lnx)dx, which results in J=xsin(lnx)−∫cos(lnx)dx.
-
Substitute J back into the expression for I. This creates an equation where I appears on both sides.
-
Solve the resulting algebraic equation for I to get the final solution.