Solveeit Logo

Question

Question: $\int cos(ln x)dx$...

cos(lnx)dx\int cos(ln x)dx

Answer

x2(cos(lnx)+sin(lnx))+C\frac{x}{2}(\cos(\ln x) + \sin(\ln x)) + C

Explanation

Solution

To evaluate the integral cos(lnx)dx\int \cos(\ln x) dx, we can use the method of integration by parts.

Let I=cos(lnx)dxI = \int \cos(\ln x) dx.

We can write the integral as 1cos(lnx)dx\int 1 \cdot \cos(\ln x) dx. Using integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du: Let u=cos(lnx)u = \cos(\ln x) and dv=1dxdv = 1 \, dx. Then, we find dudu and vv: du=ddx(cos(lnx))dx=sin(lnx)1xdxdu = \frac{d}{dx}(\cos(\ln x)) \, dx = -\sin(\ln x) \cdot \frac{1}{x} \, dx v=1dx=xv = \int 1 \, dx = x

Substitute these into the integration by parts formula: I=xcos(lnx)x(sin(lnx)1x)dxI = x \cos(\ln x) - \int x \left( -\sin(\ln x) \cdot \frac{1}{x} \right) dx I=xcos(lnx)(sin(lnx))dxI = x \cos(\ln x) - \int (-\sin(\ln x)) dx I=xcos(lnx)+sin(lnx)dxI = x \cos(\ln x) + \int \sin(\ln x) dx (Equation 1)

Now, we need to evaluate the integral sin(lnx)dx\int \sin(\ln x) dx. Let's call this JJ. Again, use integration by parts for J=1sin(lnx)dxJ = \int 1 \cdot \sin(\ln x) dx: Let u=sin(lnx)u' = \sin(\ln x) and dv=1dxdv' = 1 \, dx. Then, we find dudu' and vv': du=ddx(sin(lnx))dx=cos(lnx)1xdxdu' = \frac{d}{dx}(\sin(\ln x)) \, dx = \cos(\ln x) \cdot \frac{1}{x} \, dx v=1dx=xv' = \int 1 \, dx = x

Substitute these into the integration by parts formula for JJ: J=xsin(lnx)x(cos(lnx)1x)dxJ = x \sin(\ln x) - \int x \left( \cos(\ln x) \cdot \frac{1}{x} \right) dx J=xsin(lnx)cos(lnx)dxJ = x \sin(\ln x) - \int \cos(\ln x) dx

Notice that cos(lnx)dx\int \cos(\ln x) dx is our original integral II. So, J=xsin(lnx)IJ = x \sin(\ln x) - I. (Equation 2)

Now, substitute Equation 2 back into Equation 1: I=xcos(lnx)+(xsin(lnx)I)I = x \cos(\ln x) + (x \sin(\ln x) - I) I=xcos(lnx)+xsin(lnx)II = x \cos(\ln x) + x \sin(\ln x) - I

Add II to both sides of the equation: 2I=xcos(lnx)+xsin(lnx)2I = x \cos(\ln x) + x \sin(\ln x) 2I=x(cos(lnx)+sin(lnx))2I = x (\cos(\ln x) + \sin(\ln x))

Finally, solve for II: I=x2(cos(lnx)+sin(lnx))+CI = \frac{x}{2} (\cos(\ln x) + \sin(\ln x)) + C where CC is the constant of integration.

The integral cos(lnx)dx\int \cos(\ln x) dx is solved using integration by parts twice.

  1. First, apply integration by parts to I=1cos(lnx)dxI = \int 1 \cdot \cos(\ln x) dx, which leads to I=xcos(lnx)+sin(lnx)dxI = x \cos(\ln x) + \int \sin(\ln x) dx.

  2. Then, apply integration by parts again to the new integral J=1sin(lnx)dxJ = \int 1 \cdot \sin(\ln x) dx, which results in J=xsin(lnx)cos(lnx)dxJ = x \sin(\ln x) - \int \cos(\ln x) dx.

  3. Substitute JJ back into the expression for II. This creates an equation where II appears on both sides.

  4. Solve the resulting algebraic equation for II to get the final solution.