Solveeit Logo

Question

Question: It is given that the events A and B are such that P(1) = \(\frac { 1 } { 4 }\) , P \(\left( \frac ...

It is given that the events A and B are such that P(1) = 14\frac { 1 } { 4 } ,

P (AB)\left( \frac { \mathrm { A } } { \mathrm { B } } \right) =12\frac { 1 } { 2 },P= 23\frac { 2 } { 3 } then P(2) =

A

16\frac { 1 } { 6 }

B

13\frac { 1 } { 3 }

C

23\frac { 2 } { 3 }

D

12\frac { 1 } { 2 }

Answer

13\frac { 1 } { 3 }

Explanation

Solution

P = P(AB)P(B)\frac { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) } { \mathrm { P } ( \mathrm { B } ) } Ž 12\frac { 1 } { 2 } = 1/6P(B)\frac { 1 / 6 } { \mathrm { P } ( \mathrm { B } ) }

Ž P(2) = 1/61/2\frac { 1 / 6 } { 1 / 2 } = 26=13\frac { 2 } { 6 } = \frac { 1 } { 3 }

P (B A)\left( \frac { B } { \mathrm {~A} } \right) = P(AB)P(A)\frac { \mathrm { P } ( \mathrm { A } \cap \mathrm { B } ) } { \mathrm { P } ( \mathrm { A } ) }Ž 23\frac { 2 } { 3 } = x1/4\frac { x } { 1 / 4 }

Ž x = 1423=16\frac { 1 } { 4 } \cdot \frac { 2 } { 3 } = \frac { 1 } { 6 }