Solveeit Logo

Question

Question: It is given that \(\frac{1}{1^{4}}\)+\(\frac{1}{2^{4}}\)+\(\frac{1}{3^{4}}\)+…..¥ = \(\frac{\pi^{4}}...

It is given that 114\frac{1}{1^{4}}+124\frac{1}{2^{4}}+134\frac{1}{3^{4}}+…..¥ = π490\frac{\pi^{4}}{90} then

114+134+154+...+\frac{1}{1^{4}} + \frac{1}{3^{4}} + \frac{1}{5^{4}} + ... + \infty is equal to –

A

π496\frac{\pi^{4}}{96}

B

π445\frac{\pi^{4}}{45}

C

89π490\frac{89\pi^{4}}{90}

D

None

Answer

π496\frac{\pi^{4}}{96}

Explanation

Solution

x = 114\frac{1}{1^{4}}+134\frac{1}{3^{4}}+154\frac{1}{5^{4}}+….¥

=(114+124+134+...)\left( \frac{1}{1^{4}} + \frac{1}{2^{4}} + \frac{1}{3^{4}} + ...\infty \right)(124+144+...)\left( \frac{1}{2^{4}} + \frac{1}{4^{4}} + ...\infty \right)

= π490\frac{\pi^{4}}{90}116\frac{1}{16} (114+124+134+.....)\left( \frac{1}{1^{4}} + \frac{1}{2^{4}} + \frac{1}{3^{4}} + .....\infty \right)

= π490\frac{\pi^{4}}{90}116\frac{1}{16}. π490\frac{\pi^{4}}{90} = π496\frac{\pi^{4}}{96}.