Solveeit Logo

Question

Question: It is found that \(| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \ov...

It is found that A+B=A| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \overrightarrow { \mathrm { A } } |. This necessarily implies

A

B=0\overrightarrow { \mathrm { B } } = 0

B

A,B\overrightarrow { \mathrm { A } } , \overrightarrow { \mathrm { B } } are antiparallel

C

are perpendicular

D

Answer

A,B\overrightarrow { \mathrm { A } } , \overrightarrow { \mathrm { B } } are antiparallel

Explanation

Solution

If A+B=A| \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } | = | \overrightarrow { \mathrm { A } } | , then either B\vec { B } = 0 or . Both are satisfied when and B\vec { B } are anti – parallel.