Solveeit Logo

Question

Mathematics Question on limits and derivatives

It limx0\displaystyle \lim_{x \to 0} axexblog(1+x)x2=3\frac{axe^{x}-b\, \log\left(1+x\right)}{x^{2}}=3 then the values of a,ba, b are respectively

A

44594

B

44563

C

44593

D

2, 0

Answer

44594

Explanation

Solution

We have,
limx0axexblog(1+x)x2=3[00\displaystyle\lim _{x \rightarrow 0} \frac{\text{axe} ^{x}-b \log (1+x)}{x^{2}}=3\left[\frac{0}{0}\right. form ]]
Using L' Hospital's rule, we get
limx0aex+axexb1+x2x=3[00\displaystyle\lim _{x \rightarrow 0} \frac{a e^{x}+\text{axe}^{x}-\frac{b}{1+x}}{2 x}=3 \left[\frac{0}{0}\right. form ]]
ab=0a=b\Rightarrow a-b=0 \Rightarrow a=b
Using L' Hospital's rule, we get
limx0aex+aex+axex+b(1+x)22=3\displaystyle\lim _{x \rightarrow 0} \frac{a e^{x}+a e^{x}+\text{axe}^{x}+\frac{b}{(1+x)^{2}}}{2}=3
limx02aex+axex+b(1+x)2=6\Rightarrow \displaystyle\lim _{x \rightarrow 0} 2 a e^{x}+a x e^{x}+\frac{b}{(1+x)^{2}}=6
2a+b=6\Rightarrow 2 a +b=6
3a=6\Rightarrow 3 a=6 ...(i)
a=2\Rightarrow a=2
On putting the value of aa in E (i),we get b=2b=2