Solveeit Logo

Question

Question: I<sub>m,n</sub> = \(\int_{0}^{1}{x^{m}(\mathcal{l}nx)^{n}dx}\)...

Im,n = 01xm(lnx)ndx\int_{0}^{1}{x^{m}(\mathcal{l}nx)^{n}dx}

A

nm–\frac{n}{m}Im,n–1

B

nm+1\frac{n}{m + 1}Im,n–1

C

n+1m\frac{n + 1}{m}Im–1,n–1

D

None of these

Answer

nm+1\frac{n}{m + 1}Im,n–1

Explanation

Solution

Im,n = 01xm(logx)ndx\int_{0}^{1}{x^{m}(\log x)^{n}dx}

=[(logx)n.xm+1m+1]01\left\lbrack (\log x)^{n}.\frac{x^{m + 1}}{m + 1} \right\rbrack_{0}^{1}01n(logx)n1\int_{0}^{1}{n(\log x)^{n–1}}.

1x\frac{1}{x}. xm+1m+1\frac{x^{m + 1}}{m + 1}dx

= 0 – nm+1\frac{n}{m + 1} 01xm.(logx)n1dx\int_{0}^{1}{x^{m}.(\log x)^{n–1}dx}

= – nm+1\frac{n}{m + 1} Im,n–1