Question
Question: I<sub>1(n)</sub> =\(\int _ { 0 } ^ { \pi / 2 } \frac { \sin ( 2 n - 1 ) } { \sin x }\)dx, I<sub>2(n)...
I1(n) =∫0π/2sinxsin(2n−1)dx, I2(n) = dx, n ĪN, then-
A
I2(n +1) – I2(n) = I1(n)
B
I2(n +1) – I2(n) = I1(n + 1)
C
I2(n +1) + I1(n) = I2(n)
D
I2(n +1) + I1(n+1) = I2(n)
Answer
I2(n +1) – I2(n) = I1(n + 1)
Explanation
Solution
I2(n) – I2(n – 1) =
=
=
= I1(n)
Ž I2(n+1) – I2(n) = I1(n+1).
Hence (2) is the correct answer.