Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Is the function defined by f(x)=x2sinx+5f(x)=x^2-sin\,x+5 continuous at x=px=p ?

Answer

The given function is f(x)=x2-sinx+5
It is evident that f is defined at x=p
At x=π\pi,f(x)=f(π\pi)=π\pi2-sinπ\pi+5=π\pi2-0+5=π\pi2+5
Consider limxπ\lim_{x\rightarrow \pi}f(x)=limxπ\lim_{x\rightarrow \pi}(x2-sinx+5)
put x=π\pi+h
If x\rightarrow$$\pi, then it is evident that h\rightarrow0
limxπ\lim_{x\rightarrow \pi}f(x)=limxπ\lim_{x\rightarrow \pi}(x2-sinx+5)
=limh0\lim_{h\rightarrow 0}[(π\pi+h)2-sin(π\pi+h)+5]
=limh0\lim_{h\rightarrow 0}(π\pi+h)2-limh0\lim_{h\rightarrow 0}sin(π\pi+h)+limh0\lim_{h\rightarrow 0}5
=(π\pi+0)2-limh0\lim_{h\rightarrow 0}[sinπ\picosh+cosπ\pisinh]|+5
=π\pi2-limh0\lim_{h\rightarrow 0} sinπ\picosh-cosπ\pisinh+5
=π\pi2-sinπ\picos0-cosπ\pisin0+5
=π\pi2-0x1-(-1)x0+5
=π\pi2+5
limxπ\lim_{x\rightarrow \pi} f(x)=f(π\pi)
Therefore, the given function f is continuous at x=π\pi