Question
Mathematics Question on Continuity and differentiability
Is the function defined by f(x)=x2−sinx+5 continuous at x=p ?
Answer
The given function is f(x)=x2-sinx+5
It is evident that f is defined at x=p
At x=π,f(x)=f(π)=π2-sinπ+5=π2-0+5=π2+5
Consider limx→πf(x)=limx→π(x2-sinx+5)
put x=π+h
If x\rightarrow$$\pi, then it is evident that h→0
∴limx→πf(x)=limx→π(x2-sinx+5)
=limh→0[(π+h)2-sin(π+h)+5]
=limh→0(π+h)2-limh→0sin(π+h)+limh→05
=(π+0)2-limh→0[sinπcosh+cosπsinh]|+5
=π2-limh→0 sinπcosh-cosπsinh+5
=π2-sinπcos0-cosπsin0+5
=π2-0x1-(-1)x0+5
=π2+5
∴limx→π f(x)=f(π)
Therefore, the given function f is continuous at x=π