Question
Question: Is the following statement true? The foot of perpendicular (H) from the focus (S) on any tangent t...
Is the following statement true?
The foot of perpendicular (H) from the focus (S) on any tangent to a parabola at any point P lies on the tangent at vertex.
Solution
Hint: We have to assume parabola which bisect the angle between the focal chord through P and perpendicular from P and perpendicular from P on the directrix.
Complete step-by-step answer:
Without loss of generality, Let’s assume the parabola is
x2=4ay
The focus is (0,a) and the slope at any point (c,4ac2) is 2ac and the tangent equation is
y=4ac2=2ac(x−c)
Let the distance d be
d=16a2+4c24a(a)−2c(0)−c2+2c2
Now let’s find its maximum
d=16a2+4c24a2+c2
d=214a2+c2
This distance has its maximum varying value of c at c=0
So d=a
Now we can say that perpendicular drawn from focus on any tangent to a parabola at any point lies on the tangent at vertex.
NOTE:
Whenever you come to this type of problem assume such a point on parabola which is mentioned above. By using this we can easily get the result that the foot of perpendicular (H) from the focus (S) on any tangent to a parabola at any point P lies on the tangent at vertex.