Question
Question: Iron occurs as bcc as well as fcc unit cell. If the effective radius of an atom of iron is \(124\)pm...
Iron occurs as bcc as well as fcc unit cell. If the effective radius of an atom of iron is 124pm, compute the density (in gcm−3) of iron in bcc and fcc respectively.
A. 8.4,9.8
B. 9.3,4.6
C. 8.6,7.9
D. 7.9,8.6
Solution
To answer this question we should know the density formula of solids. Density of a solid depends upon the number of atoms, mass and length of a unit cell. First we will determine the edge length of each unit cell then by using the density formula we will determine the density of each unit cell.
Formula used:
abcc = 34r, afcc = 24r, d = Naa3zm
Complete step-by-step answer:
The formula to calculate the edge length of body-centered cubic unit cell is as follows:
a = 34r
Where,
r is the atomic radius.
a is the edge length of the unit cell.
First we will convert the atomic radius from Pico meter to centimetre as follows:
⇒1pm = 10−10cm
⇒124pm = 124×10−10cm
On substituting 124×10−10cm for the atomic radius of the unit cell.
⇒a=0−104×124×1cm3
⇒r=2.86×10−8cm
So, the edge length of the body-centered cubic unit cell of the iron atom is 2.86×10−8cm
The formula to calculate the density of cubic lattice is as follows:
d = Naa3zm
Where,
d is the density.
z is the number of atoms in a unit cell.
m is the molar mass of the metal.
Na is the Avogadro number.
a is the length of a unit cell.
The number of atoms in a bcc unit cell is 2. The molar mass of iron is 55.85u.
On substituting 2 for number of atoms, 55.85u for molar mass of the metal, 6.02×1023mol−1for Avogadro number, 2.86×10−8cm for unit cell length.
⇒d=6.02×1023mol−1×(2.86×10−8cm)32×55.85g/mol
⇒d=14.08cm3111.7g
⇒d=7.9gcm−3
So, the density of iron in bcc is 7.9gcm−3.
The formula to calculate the edge length of face-centred cubic lattice is as follows:
⇒a = 24r
On substituting 124×10−10cm for the atomic radius of the unit cell.
⇒a=0−104×124×1cm2
⇒r=3.51×10−8cm
So, the edge length of face-centered cubic unit cell of the iron atom is 3.51×10−8cm.
Now we will use the density formula to determine the density of FCC lattice as follows:
⇒d = Naa3zm
The number of atoms in an fcc unit cell is 4. The molar mass of iron is 55.85u.
On substituting 4 for number of atoms, 55.85u for molar mass of the metal, 6.02×1023mol−1for Avogadro number, 3.51×10−8cm for unit cell length.
⇒d=6.02×1023mol−1×(3.51×10−8cm)34×55.85g/mol
⇒d=26.03cm3223.4g
⇒d=8.6gcm−3
So, the density of iron in fcc is8.6gcm−3.
So, the density (in gcm−3) of iron in bcc and fcc are 7.9,8.6 respectively.
Therefore, option (D) 7.9,8.6 is correct.
Note: The value of the number of atoms depends upon the type of lattice. For face-centred cubic lattice, the number of atoms is four whereas two for body-centred and one for simple cubic lattice. The metal has more density in the fcc unit cell because in the fcc unit cell, the number of atoms is more than the bcc unit cell. Density is directly proportional to the number of atoms in the unit cell and indirectly proportional to the edge length.