Solveeit Logo

Question

Chemistry Question on The solid state

Iron exhibits bccbcc structure at room temperature. Above 900C900^{\circ}C, it transforms to fee structure. The ratio of density of iron at room temperature to that at 900C900^{\circ}C (assuming molar mass and atomic radii of iron remains constant with temperature) is

A

12\frac{1}{2}

B

32\frac{\sqrt{3}}{\sqrt{2}}

C

3342\frac{3\sqrt{3}}{4\sqrt{2}}

D

4332\frac{4\sqrt{3}}{3\sqrt{2}}

Answer

3342\frac{3\sqrt{3}}{4\sqrt{2}}

Explanation

Solution

For BCCBCC lattice :Z=2,a=4r3: Z =2, a =\frac{4 r }{\sqrt{3}} For FCCFCC lattice :Z=4,a=22r: Z =4, a =2 \sqrt{2} r d25Cd900C=(ZMNAa3)BCC(ZMNAa3)FCC=24(22r4r3)3=(3342)\therefore \frac{d_{25^{\circ} C }}{d_{900^{\circ} C }}=\frac{\left(\frac{ ZM }{ N _{ A } a ^{3}}\right)_{ BCC }}{\left(\frac{ ZM }{ N _{ A } a ^{3}}\right)_{ FCC }}=\frac{2}{4}\left(\frac{2 \sqrt{2} r }{\frac{4 r}{\sqrt{3}}}\right)^{3}=\left(\frac{3 \sqrt{3}}{4 \sqrt{2}}\right)