Solveeit Logo

Question

Chemistry Question on Bohr’s Model for Hydrogen Atom

Ionisation energy of He+He^+ is 19.6×1018J19.6 \times 10^{-18}\, J atom1^{-1}. The energy of the first stationary state (n=1)(n= 1) of Li2+Li^{2+} is

A

4.41×1016Jatom14.41 \times 10^{-16}\,J\,atom^{-1}

B

4.41×1017Jatom1-4.41 \times 10^{-17}\,J\,atom^{-1}

C

2.2×1015Jatom1-2.2 \times 10^{-15}\,J\,atom^{-1}

D

8.82×1017Jatom18.82 \times 10^{-17}\,J\,atom^{-1}

Answer

4.41×1017Jatom1-4.41 \times 10^{-17}\,J\,atom^{-1}

Explanation

Solution

I.E=Z2n2×13.6eV...(i)I.E= \frac{Z^{2}}{n^{2}}\times13.6 eV\quad\quad...\left(i\right)
or I1I2=Z12n12×n22Z22...(ii)\frac{I_{1}}{I_{2}} = \frac{Z^{2}_{1}}{n^{2}_{1}}\times\frac{n^{2}_{2}}{Z^{2}_{2}}\quad \quad ...\left(ii\right)
Given I1=19.6×1018,Z1=2,I_{1} = -19.6 \times 10^{-18}, Z_{1} = 2,
n1=1,Z2=3andn2=1n_{1} = 1, Z_{2 }= 3 and n_{2} = 1
Substituting these values in equation (ii)\left(ii\right).
19.6×1018I2=41×19-\frac{19.6\times10^{-18}}{I_{2}} = \frac{4}{1}\times\frac{1}{9}
or I2=19.6×1018×94\quad I_{2}=19.6\times 10^{-18}\times \frac{9}{4}
=4.41×1017J/atom= -4.41 \times 10^{-17}\,J/atom