Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

Investigate the values of λ\lambda and μ\mu for the system x+2y+3z=6,x+3y+5z=9x+2 y+3 z=6, x+3 y+5 z=9, 2x+5y+λz=μ2 x+5 y+\lambda z=\mu and match the values in List - I with the items in List - II. List IList II
(A)λ=8,μ15\lambda=8, \mu \neq 15
(B)λ8,μR\lambda \neq 8, \mu \in R
(C)λ=8,μ=15\lambda=8, \mu=15
A

A \to 1, B \to 2, C \to 3.

B

A \to 2, B \to 3, C \to 1.

C

A \to 3, B \to 1, C \to 2.

D

A \to 3, B \to 2, C \to 1.

Answer

A \to 2, B \to 3, C \to 1.

Explanation

Solution

Given system of linear equations is
x+2y+3z=6x+2 y+3 z=6
x+3y+5z=9x+3 y+5 z=9
and 2x+5y+λz=μ2 x+5 y+\lambda z=\mu
Now, according to Cramer's rule,
Δ=123 135 25λ\Delta=\begin{vmatrix}1 & 2 & 3 \\\ 1 & 3 & 5 \\\ 2 & 5 & \lambda\end{vmatrix}
=1(3λ25)2(λ10)+3(56)=1(3 \lambda-25)-2(\lambda-10)+3(5-6)
=λ8=\lambda-8
Δ1=623 935 μ5λ\Delta_{1}=\begin{vmatrix}6 & 2 & 3 \\\ 9 & 3 & 5 \\\ \mu & 5 & \lambda\end{vmatrix}
=6(3λ25)(29λ5μ)+3(453μ)=μ15=6(3 \lambda-25)-(29 \lambda-5 \mu) +3(45-3 \mu)=\mu-15
Δ2=163 195 2μλ\Delta_{2}=\begin{vmatrix}1 & 6 & 3 \\\ 1 & 9 & 5 \\\ 2 & \mu & \lambda\end{vmatrix}
=1(9λ5μ)6(λ10)+3(μ18)=1(9 \lambda-5 \mu)-6(\lambda-10)+3(\mu-18)
=3λ2μ+6= 3 \lambda-2 \mu+6
and
Δ3=126 139 25μ\Delta_{3}=\begin{vmatrix}1 & 2 & 6 \\\ 1 & 3 & 9 \\\ 2 & 5 & \mu\end{vmatrix}
=1(3μ452(μ18)+6(56)=1(3 \mu-45-2(\mu-18)+6(5-6)
=μ15=\mu-15
Now, if λ=8\lambda=8 and μ15\mu \neq 15, then system of linear equations has no solution.
If λ8\lambda \neq 8 and μR\mu \in R, then system of linear equations has unique solution.
And, if λ=8\lambda=8 and μ=15\mu=15, then system of linear equations has infinite number of solutions, because Δ2=3λ2μ+6\Delta_{2}=3 \lambda-2 \mu+6 is also be zero.