Solveeit Logo

Question

Question: Inverse of the matrix \(\begin{bmatrix} 3 & –2 & –1 \\ –4 & 1 & –1 \\ 2 & 0 & 1 \end{bmatrix}\) is...

Inverse of the matrix [321411201]\begin{bmatrix} 3 & –2 & –1 \\ –4 & 1 & –1 \\ 2 & 0 & 1 \end{bmatrix} is

A

[123337245]\begin{bmatrix} 1 & 2 & 3 \\ 3 & 3 & 7 \\ –2 & –4 & –5 \end{bmatrix}

B

[123257245]\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ –2 & –4 & –5 \end{bmatrix}

C

[135746427]\begin{bmatrix} 1 & –3 & 5 \\ 7 & 4 & 6 \\ 4 & 2 & 7 \end{bmatrix}

D

[124845352]\begin{bmatrix} 1 & 2 & –4 \\ 8 & –4 & –5 \\ 3 & 5 & 2 \end{bmatrix}

Answer

[123257245]\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ –2 & –4 & –5 \end{bmatrix}

Explanation

Solution

|A| = 321411201\left| \begin{matrix} 3 & –2 & –1 \\ –4 & 1 & –1 \\ 2 & 0 & 1 \end{matrix} \right|

= 3(1) + 2 (– 4 + 2) – 1 (0 – 2)

= 3 – 4 + 2 = 1

adj A = [122254375]T\begin{bmatrix} 1 & 2 & –2 \\ 2 & 5 & –4 \\ 3 & 7 & –5 \end{bmatrix}^{T} = [123257245]\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ –2 & –4 & –5 \end{bmatrix}

A–1 =AdjAA\frac{AdjA}{|A|} = [123257245]\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ –2 & –4 & –5 \end{bmatrix}