Question
Question: Inverse of diagonal matrix (if it exists) is a...
Inverse of diagonal matrix (if it exists) is a
A
Skew-symmetric matrix
B
Diagonal matrix
C
Non invertible matrix
D
None of these
Answer
Diagonal matrix
Explanation
Solution
Let A=diag(d1,d2,d3......,dn)
As A is invertible, therefore det(A)=0
⇒ d1,d2,d3.......,dn=0 ⇒ di=0 for i = 1, 2, 3…..n
Here, cofactor of each non diagonal entry is 0 and cofactor of aii
$$$.d_{i + 1},......,d_{n}$ $= \frac { 1 } { d _ { i } } \left[ d _ { 1 } , d _ { 2 } , d _ { 3 } \ldots . , d _ { i - 1 } , d _ { i } , d _ { i + 1 } \ldots . . , d _ { n } \right] = \frac { | A | } { d _ { i } }$ $A^{- 1} = \frac{1}{|A|}(adjA) = diag\left( \frac{1}{d_{1}},\frac{1}{d_{2}}.......,\frac{1}{d_{n}} \right),$ which is a diagonal matrix