Solveeit Logo

Question

Question: Inverse of diagonal matrix (if it exists) is a...

Inverse of diagonal matrix (if it exists) is a

A

Skew-symmetric matrix

B

Diagonal matrix

C

Non invertible matrix

D

None of these

Answer

Diagonal matrix

Explanation

Solution

Let A=diag(d1,d2,d3......,dn)A = \text{diag}(d_{1},d_{2},d_{3}......,d_{n})

As A is invertible, therefore det(A)0\det(A) \neq 0

d1,d2,d3.......,dn0d_{1},d_{2},d_{3}.......,d_{n} \neq 0di0d_{i} \neq 0 for i = 1, 2, 3…..n

Here, cofactor of each non diagonal entry is 0 and cofactor of aiia_{ii}

$$$.d_{i + 1},......,d_{n}$ $= \frac { 1 } { d _ { i } } \left[ d _ { 1 } , d _ { 2 } , d _ { 3 } \ldots . , d _ { i - 1 } , d _ { i } , d _ { i + 1 } \ldots . . , d _ { n } \right] = \frac { | A | } { d _ { i } }$ $A^{- 1} = \frac{1}{|A|}(adjA) = diag\left( \frac{1}{d_{1}},\frac{1}{d_{2}}.......,\frac{1}{d_{n}} \right),$ which is a diagonal matrix