Question
Question: Inverse of a point a with respect to the circle \(|z - c| = R\) (a and c are complex numbers, centre...
Inverse of a point a with respect to the circle ∣z−c∣=R (a and c are complex numbers, centre C and radius R) is the point c+aˉ−cˉR2
A
c+aˉ−cˉR2
B
c−aˉ−cˉR2
C
c+cˉ−aˉR
D
None of these
Answer
c+aˉ−cˉR2
Explanation
Solution
Sol. Let a' be the inverse point of a with respect to the circle ∣z−c∣=R, then by definition the points c, a, a' are collinear.
We have, a⥂rg(a′−c)=a⥂rg(a−c)=−a⥂rg(aˉ−cˉ) (∵a⥂rgzˉ=−a⥂rgz)
⇒ a⥂rg(a′−c)+a⥂rg(aˉ−cˉ)=0 ⇒ a⥂rg{(a′−c)(aˉ−cˉ)}=0
∴ (a′−c)(aˉ−cˉ) is purely real and positive.
By definition ∣a′−c∣∣a−c∣=R2
(∵CP.C⥂Q=r2)
⇒ ∣a′−c∣∣aˉ−cˉ∣=R2 (∵∣z∣=∣zˉ∣)
⇒ ∣(a′−c)(aˉ−cˉ)∣=R2 ⇒ (a′−c)(aˉ−cˉ)=R2 {∵(a′−c)(aˉ−cˉ) is purely real and positive}
⇒ a′−c=aˉ−cˉR2. Therefore, the inverse point a' of a point a, a′=c+aˉ−cˉR2.
